本文整理匯總了Python中numpy.linalg.qr方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.qr方法的具體用法?Python linalg.qr怎麽用?Python linalg.qr使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.linalg
的用法示例。
在下文中一共展示了linalg.qr方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_mode_raw
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = self.array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
# Test double
h, tau = linalg.qr(a, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
示例2: test_mode_raw
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
# Test double
h, tau = linalg.qr(a, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
示例3: test_mode_raw
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
b = a.astype(np.single)
# Test double
h, tau = linalg.qr(a, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
示例4: _rcanonicalize
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def _rcanonicalize(self, to_site):
"""Left-canonicalizes all local tensors _ltens[:to_site] in place
:param to_site: Index of the site up to which canonicalization is to be
performed
"""
assert 0 <= to_site < len(self), 'to_site={!r}'.format(to_site)
lcanon, rcanon = self._lt.canonical_form
for site in range(lcanon, to_site):
ltens = self._lt[site]
q, r = qr(ltens.reshape((-1, ltens.shape[-1])))
# if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp.
# can be accounted by adapting rank here
newtens = (q.reshape(ltens.shape[:-1] + (-1,)),
matdot(r, self._lt[site + 1]))
self._lt.update(slice(site, site + 2), newtens,
canonicalization=('left', None))
示例5: _lcanonicalize
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def _lcanonicalize(self, to_site):
"""Right-canonicalizes all local tensors _ltens[to_site:] in place
:param to_site: Index of the site up to which canonicalization is to be
performed
"""
assert 0 < to_site <= len(self), 'to_site={!r}'.format(to_site)
lcanon, rcanon = self.canonical_form
for site in range(rcanon - 1, to_site - 1, -1):
ltens = self._lt[site]
q, r = qr(ltens.reshape((ltens.shape[0], -1)).T)
# if ltens.shape[-1] > prod(ltens.phys_shape) --> trivial comp.
# can be accounted by adapting rank here
newtens = (matdot(self._lt[site - 1], r.T),
q.T.reshape((-1,) + ltens.shape[1:]))
self._lt.update(slice(site - 1, site + 1), newtens,
canonicalization=(None, 'right'))
示例6: _extract_factors
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def _extract_factors(tens, ndims):
"""Extract iteratively the leftmost MPO tensor with given number of
legs by a qr-decomposition
:param np.ndarray tens: Full tensor to be factorized
:param ndims: Number of physical legs per site or iterator over number of
physical legs
:returns: List of local tensors with given number of legs yielding a
factorization of tens
"""
current = next(ndims) if isinstance(ndims, collections.Iterator) else ndims
if tens.ndim == current + 2:
return [tens]
elif tens.ndim < current + 2:
raise AssertionError("Number of remaining legs insufficient.")
else:
unitary, rest = qr(tens.reshape((np.prod(tens.shape[:current + 1]), -1)))
unitary = unitary.reshape(tens.shape[:current + 1] + rest.shape[:1])
rest = rest.reshape(rest.shape[:1] + tens.shape[current + 1:])
return [unitary] + _extract_factors(rest, ndims)
示例7: check_qr
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def check_qr(self, a):
# This test expects the argument `a` to be an ndarray or
# a subclass of an ndarray of inexact type.
a_type = type(a)
a_dtype = a.dtype
m, n = a.shape
k = min(m, n)
# mode == 'complete'
q, r = linalg.qr(a, mode='complete')
assert_(q.dtype == a_dtype)
assert_(r.dtype == a_dtype)
assert_(isinstance(q, a_type))
assert_(isinstance(r, a_type))
assert_(q.shape == (m, m))
assert_(r.shape == (m, n))
assert_almost_equal(dot(q, r), a)
assert_almost_equal(dot(q.T.conj(), q), np.eye(m))
assert_almost_equal(np.triu(r), r)
# mode == 'reduced'
q1, r1 = linalg.qr(a, mode='reduced')
assert_(q1.dtype == a_dtype)
assert_(r1.dtype == a_dtype)
assert_(isinstance(q1, a_type))
assert_(isinstance(r1, a_type))
assert_(q1.shape == (m, k))
assert_(r1.shape == (k, n))
assert_almost_equal(dot(q1, r1), a)
assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
assert_almost_equal(np.triu(r1), r1)
# mode == 'r'
r2 = linalg.qr(a, mode='r')
assert_(r2.dtype == a_dtype)
assert_(isinstance(r2, a_type))
assert_almost_equal(r2, r1)
示例8: test_qr_empty
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_qr_empty(self, m, n):
k = min(m, n)
a = np.empty((m, n))
self.check_qr(a)
h, tau = np.linalg.qr(a, mode='raw')
assert_equal(h.dtype, np.double)
assert_equal(tau.dtype, np.double)
assert_equal(h.shape, (n, m))
assert_equal(tau.shape, (k,))
示例9: test_qr_empty
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_qr_empty(self):
a = np.zeros((0, 2))
assert_raises(linalg.LinAlgError, linalg.qr, a)
示例10: test_0_size
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def test_0_size(self):
# There may be good ways to do (some of this) reasonably:
a = np.zeros((0, 0))
assert_raises(linalg.LinAlgError, linalg.qr, a)
a = np.zeros((0, 1))
assert_raises(linalg.LinAlgError, linalg.qr, a)
a = np.zeros((1, 0))
assert_raises(linalg.LinAlgError, linalg.qr, a)
示例11: qr_decomposition
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import qr [as 別名]
def qr_decomposition(a, mode='full'):
res = _qr(a, mode)
if mode == 'full':
return res
return (None, res)