本文整理匯總了Python中numpy.linalg.pinv方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.pinv方法的具體用法?Python linalg.pinv怎麽用?Python linalg.pinv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.linalg
的用法示例。
在下文中一共展示了linalg.pinv方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_byteorder_check
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def test_byteorder_check():
# Byte order check should pass for native order
if sys.byteorder == 'little':
native = '<'
else:
native = '>'
for dtt in (np.float32, np.float64):
arr = np.eye(4, dtype=dtt)
n_arr = arr.newbyteorder(native)
sw_arr = arr.newbyteorder('S').byteswap()
assert_equal(arr.dtype.byteorder, '=')
for routine in (linalg.inv, linalg.det, linalg.pinv):
# Normal call
res = routine(arr)
# Native but not '='
assert_array_equal(res, routine(n_arr))
# Swapped
assert_array_equal(res, routine(sw_arr))
示例2: _compute_a
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def _compute_a(self):
"""fixed effects parameters
Display (3.1) of
Laird, Lange, Stram (see help(Mixed)).
"""
for unit in self.units:
unit.fit(self.a, self.D, self.sigma)
S = sum([unit.compute_xtwx() for unit in self.units])
Y = sum([unit.compute_xtwy() for unit in self.units])
self.Sinv = L.pinv(S)
self.a = np.dot(self.Sinv, Y)
示例3: __init__
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def __init__(self, A, B, offset, scale, px_offset, px_scale, gsd=None, proj=None, default_z=0):
self.proj = proj
self._A = A
self._B = B
self._offset = offset
self._scale = scale
self._px_offset = px_offset
self._px_scale = px_scale
self._gsd = gsd
self._offscl = np.vstack([offset, scale])
self._offscl_rev = np.vstack([-offset/scale, 1.0/scale])
self._px_offscl_rev = np.vstack([px_offset, px_scale])
self._px_offscl = np.vstack([-px_offset/px_scale, 1.0/px_scale])
self._default_z = default_z
self._A_rev = np.dot(pinv(np.dot(np.transpose(A), A)), np.transpose(A))
# only using the numerator (more dynamic range for the fit?)
# self._B_rev = np.dot(pinv(np.dot(np.transpose(B), B)), np.transpose(B))
示例4: algorithm_1
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def algorithm_1(y, u, l, m, f, N, U_n, S_n, V_n, W1, O_i, threshold, max_order, D_required):
U_n, S_n, V_n = reducingOrder(U_n, S_n, V_n, threshold, max_order)
V_n = V_n.T
n = S_n.size
S_n = np.diag(S_n)
if W1 is None: #W1 is identity
Ob = np.dot(U_n, sc.linalg.sqrtm(S_n))
else:
Ob = np.dot(np.linalg.inv(W1), np.dot(U_n, sc.linalg.sqrtm(S_n)))
X_fd = np.dot(np.linalg.pinv(Ob), O_i)
Sxterm = impile(X_fd[:, 1:N], y[:, f:f + N - 1])
Dxterm = impile(X_fd[:, 0:N - 1], u[:, f:f + N - 1])
if D_required == True:
M = np.dot(Sxterm, np.linalg.pinv(Dxterm))
else:
M = np.zeros((n + l, n + m))
M[0:n, :] = np.dot(Sxterm[0:n], np.linalg.pinv(Dxterm))
M[n::, 0:n] = np.dot(Sxterm[n::], np.linalg.pinv(Dxterm[0:n, :]))
residuals = Sxterm - np.dot(M, Dxterm)
return Ob, X_fd, M, n, residuals
示例5: do
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def do(self, a, b, tags):
a_ginv = linalg.pinv(a)
# `a @ a_ginv == I` does not hold if a is singular
dot = dot_generalized
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
assert_(consistent_subclass(a_ginv, a))
示例6: do
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def do(self, a, b):
a_ginv = linalg.pinv(a)
assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix)))
示例7: do
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def do(self, a, b, tags):
a_ginv = linalg.pinv(a)
# `a @ a_ginv == I` does not hold if a is singular
dot = dot_generalized
assert_almost_equal(dot(dot(a, a_ginv), a), a, single_decimal=5, double_decimal=11)
assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix)))
示例8: initialize
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def initialize(self):
S = sum([np.dot(unit.X.T, unit.X) for unit in self.units])
Y = sum([np.dot(unit.X.T, unit.Y) for unit in self.units])
self.a = L.lstsq(S, Y, rcond=-1)[0]
D = 0
t = 0
sigmasq = 0
for unit in self.units:
unit.r = unit.Y - np.dot(unit.X, self.a)
if self.q > 1:
unit.b = L.lstsq(unit.Z, unit.r, rcond=-1)[0]
else:
Z = unit.Z.reshape((unit.Z.shape[0], 1))
unit.b = L.lstsq(Z, unit.r, rcond=-1)[0]
sigmasq += (np.power(unit.Y, 2).sum() -
(self.a * np.dot(unit.X.T, unit.Y)).sum() -
(unit.b * np.dot(unit.Z.T, unit.r)).sum())
D += np.multiply.outer(unit.b, unit.b)
t += L.pinv(np.dot(unit.Z.T, unit.Z))
#TODO: JP added df_resid check
self.df_resid = (self.N - (self.m - 1) * self.q - self.p)
sigmasq /= (self.N - (self.m - 1) * self.q - self.p)
self.sigma = np.sqrt(sigmasq)
self.D = (D - sigmasq * t) / self.m
示例9: compute_matrix
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def compute_matrix(self, *args, **kw):
"""
Construct a contrast matrix C so that
colspan(dot(D, C)) = colspan(dot(D, dot(pinv(D), T)))
where pinv(D) is the generalized inverse of D=self.D=self.formula().
If the design, self.D is already set,
then evaldesign can be set to False.
"""
t = copy.copy(self.term)
t.namespace = self.formula.namespace
T = np.transpose(np.array(t(*args, **kw)))
if T.ndim == 1:
T.shape = (T.shape[0], 1)
self.T = utils.clean0(T)
self.D = self.formula.design(*args, **kw)
self._matrix = contrastfromcols(self.T, self.D)
try:
self.rank = self.matrix.shape[1]
except:
self.rank = 1
示例10: generalized_inverse
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def generalized_inverse(a, rcond = 1.e-10):
return linalg.pinv(a, rcond)
# Determinant
示例11: solve
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def solve(a, b):
"""Returns the solution of A X = B."""
try:
return linalg.solve(a, b)
except linalg.LinAlgError:
return np.dot(linalg.pinv(a), b)
示例12: inv
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import pinv [as 別名]
def inv(a):
"""Returns the inverse of A."""
try:
return np.linalg.inv(a)
except linalg.LinAlgError:
return np.linalg.pinv(a)