當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.multi_dot方法代碼示例

本文整理匯總了Python中numpy.linalg.multi_dot方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.multi_dot方法的具體用法?Python linalg.multi_dot怎麽用?Python linalg.multi_dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.linalg的用法示例。


在下文中一共展示了linalg.multi_dot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_boson_operator_sparse_multi_mode

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_boson_operator_sparse_multi_mode(self):
        op = BosonOperator('0^ 1 1^ 2')
        res = boson_operator_sparse(op, self.d).toarray()

        b0 = boson_ladder_sparse(3, 0, 0, self.d).toarray()
        b1 = boson_ladder_sparse(3, 1, 0, self.d).toarray()
        b2 = boson_ladder_sparse(3, 2, 0, self.d).toarray()

        expected = multi_dot([b0.T, b1, b1.T, b2])
        self.assertTrue(numpy.allclose(res, expected))

        op = QuadOperator('q0 p0 p1')
        res = boson_operator_sparse(op, self.d, self.hbar).toarray()

        expected = numpy.identity(self.d**2)
        for term in op.terms:
            for i, j in term:
                expected = expected.dot(single_quad_op_sparse(
                    2, i, j, self.hbar, self.d).toarray())
        self.assertTrue(numpy.allclose(res, expected)) 
開發者ID:quantumlib,項目名稱:OpenFermion,代碼行數:22,代碼來源:_sparse_tools_test.py

示例2: estimate_cor

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def estimate_cor(wmat, ldmat, intercept=False):
    """
    Estimate the sample correlation structure for predicted expression.

    :param wmat: numpy.ndarray eQTL weight matrix for a risk region
    :param ldmat: numpy.ndarray LD matrix for a risk region
    :param intercept: bool to return the intercept variable or not

    :return: tuple (pred_expr correlation, intercept variable; None if intercept=False)
    """
    wcov = mdot([wmat.T, ldmat, wmat])
    scale = np.diag(1 / np.sqrt(np.diag(wcov)))
    wcor = mdot([scale, wcov, scale])

    if intercept:
        inter = mdot([scale, wmat.T, ldmat])
        return wcor, inter
    else:
        return wcor, None 
開發者ID:bogdanlab,項目名稱:focus,代碼行數:21,代碼來源:finemap.py

示例3: assoc_test

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def assoc_test(weights, gwas, ldmat, heterogeneity=False):
    """
    TWAS association test.

    :param weights: numpy.ndarray of eQTL weights
    :param gwas: pyfocus.GWAS object
    :param ldmat: numpy.ndarray LD matrix
    :param heterogeneity:  bool estimate variance from multiplicative random effect

    :return: tuple (beta, se)
    """

    p = ldmat.shape[0]
    assoc = np.dot(weights, gwas.Z)
    if heterogeneity:
        resid = assoc - gwas.Z
        resid_var = mdot([resid, lin.pinvh(ldmat), resid]) / p
    else:
        resid_var = 1

    se = np.sqrt(resid_var * mdot([weights, ldmat, weights]))

    return assoc, se 
開發者ID:bogdanlab,項目名稱:focus,代碼行數:25,代碼來源:finemap.py

示例4: test_diagonalization

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_diagonalization(self, obs, mat, eigs, tol):
        """Test the method transforms standard observables into the Z-gate."""
        ob = obs(wires=0)
        A = ob.matrix

        diag_gates = ob.diagonalizing_gates()
        U = np.eye(2)

        if diag_gates:
            mats = [i.matrix for i in diag_gates]
            # Need to revert the order in which the matrices are applied such that they adhere to the order
            # of matrix multiplication
            # E.g. for PauliY: [PauliZ(wires=self.wires), S(wires=self.wires), Hadamard(wires=self.wires)]
            # becomes Hadamard @ S @ PauliZ, where @ stands for matrix multiplication
            mats = mats[::-1]
            U = multi_dot([np.eye(2)] + mats)

        res = U @ A @ U.conj().T
        expected = np.diag(eigs)
        assert np.allclose(res, expected, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:22,代碼來源:test_qubit_ops.py

示例5: test_x_decomposition

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_x_decomposition(self, tol):
        """Tests that the decomposition of the PauliX is correct"""
        op = qml.PauliX(wires=0)
        res = op.decomposition(0)

        assert len(res) == 3

        assert res[0].name == "PhaseShift"
        assert res[0].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2
        
        assert res[1].name == "RX"
        assert res[1].wires == [0]  #qml.wires.Wires([0])
        assert res[1].params[0] == np.pi
        
        assert res[2].name == "PhaseShift"
        assert res[2].wires == [0]  #qml.wires.Wires([0])
        assert res[2].params[0] == np.pi / 2

        decomposed_matrix = np.linalg.multi_dot([i.matrix for i in reversed(res)])
        assert np.allclose(decomposed_matrix, op.matrix, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:23,代碼來源:test_qubit_ops.py

示例6: test_y_decomposition

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_y_decomposition(self, tol):
        """Tests that the decomposition of the PauliY is correct"""
        op = qml.PauliY(wires=0)
        res = op.decomposition(0)

        assert len(res) == 3

        assert res[0].name == "PhaseShift"
        assert res[0].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2
        
        assert res[1].name == "RY"
        assert res[1].wires == [0]  #qml.wires.Wires([0])
        assert res[1].params[0] == np.pi
        
        assert res[2].name == "PhaseShift"
        assert res[2].wires == [0]  #qml.wires.Wires([0])
        assert res[2].params[0] == np.pi / 2
        
        decomposed_matrix = np.linalg.multi_dot([i.matrix for i in reversed(res)])
        assert np.allclose(decomposed_matrix, op.matrix, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:23,代碼來源:test_qubit_ops.py

示例7: test_hadamard_decomposition

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_hadamard_decomposition(self, tol):
        """Tests that the decomposition of the Hadamard gate is correct"""
        op = qml.Hadamard(wires=0)
        res = op.decomposition(0)

        assert len(res) == 3

        assert res[0].name == "PhaseShift"
        assert res[0].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2

        assert res[1].name == "RX"
        assert res[1].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2
        
        assert res[2].name == "PhaseShift"
        assert res[2].wires == [0]  #qml.wires.Wires([0])
        assert res[0].params[0] == np.pi / 2
        
        decomposed_matrix = np.linalg.multi_dot([i.matrix for i in reversed(res)])
        assert np.allclose(decomposed_matrix, op.matrix, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:pennylane,代碼行數:23,代碼來源:test_qubit_ops.py

示例8: __init__

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def __init__(self):
        matrix_pairs = {}
        rng = np.random.RandomState(SEED)
        for s in SIZES:
            for n_terms in [2, 4]:
                for explicit in [True, False]:
                    arrays = [
                        rng.standard_normal((s if t % 2 == 0 else 2 * s,
                                             2 * s if t % 2 == 0 else s))
                        for t in range(n_terms)]
                    matrices_ = [
                        matrices.DenseRectangularMatrix(a) for a in arrays]
                    if explicit:
                        matrix = matrices.MatrixProduct(matrices_)
                    else:
                        matrix = reduce(lambda a, b: a @ b, matrices_)
                    matrix_pairs[(s, n_terms, explicit)] = (
                        matrix, nla.multi_dot(arrays))
        super().__init__(matrix_pairs, rng) 
開發者ID:matt-graham,項目名稱:mici,代碼行數:21,代碼來源:test_matrices.py

示例9: test_basic_function_with_three_arguments

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_basic_function_with_three_arguments(self):
        # multi_dot with three arguments uses a fast hand coded algorithm to
        # determine the optimal order. Therefore test it separately.
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))

        assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
        assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_linalg.py

示例10: test_basic_function_with_two_arguments

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_basic_function_with_two_arguments(self):
        # separate code path with two arguments
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))

        assert_almost_equal(multi_dot([A, B]), A.dot(B))
        assert_almost_equal(multi_dot([A, B]), np.dot(A, B)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:9,代碼來源:test_linalg.py

示例11: test_basic_function_with_dynamic_programing_optimization

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_basic_function_with_dynamic_programing_optimization(self):
        # multi_dot with four or more arguments uses the dynamic programing
        # optimization and therefore deserve a separate
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D = np.random.random((2, 1))
        assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:10,代碼來源:test_linalg.py

示例12: test_vector_as_first_argument

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_vector_as_first_argument(self):
        # The first argument can be 1-D
        A1d = np.random.random(2)  # 1-D
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D = np.random.random((2, 2))

        # the result should be 1-D
        assert_equal(multi_dot([A1d, B, C, D]).shape, (2,)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_linalg.py

示例13: test_vector_as_last_argument

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_vector_as_last_argument(self):
        # The last argument can be 1-D
        A = np.random.random((6, 2))
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D1d = np.random.random(2)  # 1-D

        # the result should be 1-D
        assert_equal(multi_dot([A, B, C, D1d]).shape, (6,)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_linalg.py

示例14: test_too_few_input_arrays

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_too_few_input_arrays(self):
        assert_raises(ValueError, multi_dot, [])
        assert_raises(ValueError, multi_dot, [np.random.random((3, 3))]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:5,代碼來源:test_linalg.py

示例15: test_vector_as_first_and_last_argument

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import multi_dot [as 別名]
def test_vector_as_first_and_last_argument(self):
        # The first and last arguments can be 1-D
        A1d = np.random.random(2)  # 1-D
        B = np.random.random((2, 6))
        C = np.random.random((6, 2))
        D1d = np.random.random(2)  # 1-D

        # the result should be a scalar
        assert_equal(multi_dot([A1d, B, C, D1d]).shape, ()) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:11,代碼來源:test_linalg.py


注:本文中的numpy.linalg.multi_dot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。