當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.matrix_rank方法代碼示例

本文整理匯總了Python中numpy.linalg.matrix_rank方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.matrix_rank方法的具體用法?Python linalg.matrix_rank怎麽用?Python linalg.matrix_rank使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.linalg的用法示例。


在下文中一共展示了linalg.matrix_rank方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_matrix_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_matrix_rank(self):
        # Full rank matrix
        assert_equal(4, matrix_rank(np.eye(4)))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        assert_equal(matrix_rank(I), 3)
        # All zeros - zero rank
        assert_equal(matrix_rank(np.zeros((4, 4))), 0)
        # 1 dimension - rank 1 unless all 0
        assert_equal(matrix_rank([1, 0, 0, 0]), 1)
        assert_equal(matrix_rank(np.zeros((4,))), 0)
        # accepts array-like
        assert_equal(matrix_rank([1]), 1)
        # greater than 2 dimensions treated as stacked matrices
        ms = np.array([I, np.eye(4), np.zeros((4,4))])
        assert_equal(matrix_rank(ms), np.array([3, 4, 0]))
        # works on scalar
        assert_equal(matrix_rank(1), 1) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_linalg.py

示例2: test_matrix_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_matrix_rank(self):
        # Full rank matrix
        yield assert_equal, 4, matrix_rank(np.eye(4))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        yield assert_equal, matrix_rank(I), 3
        # All zeros - zero rank
        yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
        # 1 dimension - rank 1 unless all 0
        yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
        yield assert_equal, matrix_rank(np.zeros((4,))), 0
        # accepts array-like
        yield assert_equal, matrix_rank([1]), 1
        # greater than 2 dimensions raises error
        yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
        # works on scalar
        yield assert_equal, matrix_rank(1), 1 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:20,代碼來源:test_linalg.py

示例3: test_matrix_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_matrix_rank(self):
        # Full rank matrix
        yield assert_equal, 4, matrix_rank(np.eye(4))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        yield assert_equal, matrix_rank(I), 3
        # All zeros - zero rank
        yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
        # 1 dimension - rank 1 unless all 0
        yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
        yield assert_equal, matrix_rank(np.zeros((4,))), 0
        # accepts array-like
        yield assert_equal, matrix_rank([1]), 1
        # greater than 2 dimensions treated as stacked matrices
        ms = np.array([I, np.eye(4), np.zeros((4,4))])
        yield assert_equal, matrix_rank(ms), np.array([3, 4, 0])
        # works on scalar
        yield assert_equal, matrix_rank(1), 1 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:test_linalg.py

示例4: _multivariate_ols_test

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def _multivariate_ols_test(hypotheses, fit_results, exog_names,
                            endog_names):
    def fn(L, M, C):
        # .. [1] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm
        params, df_resid, inv_cov, sscpr = fit_results
        # t1 = (L * params)M
        t1 = L.dot(params).dot(M) - C
        # H = t1'L(X'X)^L't1
        t2 = L.dot(inv_cov).dot(L.T)
        q = matrix_rank(t2)
        H = t1.T.dot(inv(t2)).dot(t1)

        # E = M'(Y'Y - B'(X'X)B)M
        E = M.T.dot(sscpr).dot(M)
        return E, H, q, df_resid

    return _multivariate_test(hypotheses, exog_names, endog_names, fn) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:multivariate_ols.py

示例5: test_matrix_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_matrix_rank(self):
        # Full rank matrix
        yield assert_equal, 4, matrix_rank(np.eye(4))
        # rank deficient matrix
        I=np.eye(4); I[-1, -1] = 0.
        yield assert_equal, matrix_rank(I), 3
        # All zeros - zero rank
        yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
        # 1 dimension - rank 1 unless all 0
        yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
        yield assert_equal, matrix_rank(np.zeros((4,))), 0
        # accepts array-like
        yield assert_equal, matrix_rank([1]), 1
        # greater than 2 dimensions raises error
        yield assert_raises, TypeError, matrix_rank, np.zeros((2, 2, 2))
        # works on scalar
        yield assert_equal, matrix_rank(1), 1 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:19,代碼來源:test_linalg.py

示例6: find_colinear_columns

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def find_colinear_columns(
        arr: np.ndarray,
        arr_rank: Optional[int]=None) -> List[int]:

    if arr_rank is None:
        arr_rank = la.matrix_rank(arr)
    K = arr.shape[1]
    num_colinear_cols = K - arr_rank
    if num_colinear_cols <= 0: raise ValueError("No colinear columns.")

    # Cycle through all columns; if a col doesn't increase rank, it's
    # colinear so flag it
    target_rank = 2
    colinear_cols = []
    for j in range(1, K):
        sub_rank = la.matrix_rank(arr[:, :(j + 1)])
        if sub_rank == target_rank:
            target_rank += 1
        else:
            colinear_cols.append(j)

        if len(colinear_cols) == num_colinear_cols:
            break  # We found them all; quit.

    return colinear_cols 
開發者ID:dmsul,項目名稱:econtools,代碼行數:27,代碼來源:regutil.py

示例7: test_2_in_1_ACA_with_different_matrices

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_2_in_1_ACA_with_different_matrices():
    n = 5
    A = np.arange(1, 1+n**2).reshape((n, n)) + np.random.rand(n, n)
    B = A.T

    def get_row_func(i):
        return A[i, :], B[i, :]

    def get_col_func(j):
        return A[:, j], B[:, j]

    lrA, lrB = LowRankMatrix.from_rows_and_cols_functions_with_multi_ACA(
        get_row_func, get_col_func, n, n, nb_matrices=2, max_rank=3
    )

    assert matrix_rank(lrA.full_matrix()) == matrix_rank(lrB.full_matrix()) == 3 
開發者ID:mancellin,項目名稱:capytaine,代碼行數:18,代碼來源:test_matrices.py

示例8: test_symmetric_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_symmetric_rank(self):
        assert_equal(4, matrix_rank(np.eye(4), hermitian=True))
        assert_equal(1, matrix_rank(np.ones((4, 4)), hermitian=True))
        assert_equal(0, matrix_rank(np.zeros((4, 4)), hermitian=True))
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        assert_equal(3, matrix_rank(I, hermitian=True))
        # manually supplied tolerance
        I[-1, -1] = 1e-8
        assert_equal(4, matrix_rank(I, hermitian=True, tol=0.99e-8))
        assert_equal(3, matrix_rank(I, hermitian=True, tol=1.01e-8)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_linalg.py

示例9: test_reduced_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_reduced_rank():
    # Test matrices with reduced rank
    rng = np.random.RandomState(20120714)
    for i in range(100):
        # Make a rank deficient matrix
        X = rng.normal(size=(40, 10))
        X[:, 0] = X[:, 1] + X[:, 2]
        # Assert that matrix_rank detected deficiency
        assert_equal(matrix_rank(X), 9)
        X[:, 3] = X[:, 4] + X[:, 5]
        assert_equal(matrix_rank(X), 8) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:13,代碼來源:test_linalg.py

示例10: get_R_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def get_R_rank(self):
        """Get the rank of the R matrix.

        Returns
        -------

        rank : int
            The rank of the R matrix
        """
        return matrix_rank(self.get_R()) 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:12,代碼來源:dqrutl.py

示例11: test_symmetric_rank

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def test_symmetric_rank(self):
        yield assert_equal, 4, matrix_rank(np.eye(4), hermitian=True)
        yield assert_equal, 1, matrix_rank(np.ones((4, 4)), hermitian=True)
        yield assert_equal, 0, matrix_rank(np.zeros((4, 4)), hermitian=True)
        # rank deficient matrix
        I = np.eye(4)
        I[-1, -1] = 0.
        yield assert_equal, 3, matrix_rank(I, hermitian=True)
        # manually supplied tolerance
        I[-1, -1] = 1e-8
        yield assert_equal, 4, matrix_rank(I, hermitian=True, tol=0.99e-8)
        yield assert_equal, 3, matrix_rank(I, hermitian=True, tol=1.01e-8) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:14,代碼來源:test_linalg.py

示例12: initialize

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import matrix_rank [as 別名]
def initialize(self, design):
        # PLEASE don't assume we have a constant...
        # TODO: handle case for noconstant regression
        self.design = design
        self.whitened_design = self.whiten(self.design)
        self.calc_beta = spl.pinv(self.whitened_design)
        self.normalized_cov_beta = np.dot(self.calc_beta,
                                          np.transpose(self.calc_beta))
        self.df_total = self.whitened_design.shape[0]

        eps = np.abs(self.design).sum() * np.finfo(np.float).eps
        self.df_model = matrix_rank(self.design, eps)
        self.df_residuals = self.df_total - self.df_model 
開發者ID:nilearn,項目名稱:nistats,代碼行數:15,代碼來源:regression.py


注:本文中的numpy.linalg.matrix_rank方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。