當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.lstsq方法代碼示例

本文整理匯總了Python中numpy.linalg.lstsq方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.lstsq方法的具體用法?Python linalg.lstsq怎麽用?Python linalg.lstsq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.linalg的用法示例。


在下文中一共展示了linalg.lstsq方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_future_rcond

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def test_future_rcond(self):
        a = np.array([[0., 1.,  0.,  1.,  2.,  0.],
                      [0., 2.,  0.,  0.,  1.,  0.],
                      [1., 0.,  1.,  0.,  0.,  4.],
                      [0., 0.,  0.,  2.,  3.,  0.]]).T

        b = np.array([1, 0, 0, 0, 0, 0])
        with suppress_warnings() as sup:
            w = sup.record(FutureWarning, "`rcond` parameter will change")
            x, residuals, rank, s = linalg.lstsq(a, b)
            assert_(rank == 4)
            x, residuals, rank, s = linalg.lstsq(a, b, rcond=-1)
            assert_(rank == 4)
            x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
            assert_(rank == 3)
            # Warning should be raised exactly once (first command)
            assert_(len(w) == 1) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_linalg.py

示例2: do

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:test_linalg.py

示例3: do

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (np.asarray(abs(np.dot(a, x) - b))**2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = type(x)([])
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:25,代碼來源:test_linalg.py

示例4: solve_lms

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def solve_lms(all_tags, all_bits, segdata, bias=0.0):
    """
    Solves using direct least square solution (NumPy)

    Parameters
    ----------

    all_tags:
        List of considered tags.
    all_bits:
        List of considered bits.
    segdata:
        List of segdata used.
    bias:
        T.B.D.
    """

    # Build matrices
    A, B = build_matrices(all_tags, all_bits, segdata, bias)

    # Solve
    X, res, r, s = linalg.lstsq(A, B, rcond=None)

    return X, compute_error(A, B, X) 
開發者ID:SymbiFlow,項目名稱:prjxray,代碼行數:26,代碼來源:lms_solver.py

示例5: _compute_affine_transform_cvpy

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def _compute_affine_transform_cvpy(refpoints, points, w = None): # Copied from the book
    if w == None:
        w = [1] * (len(points) * 2)
    assert(len(w) == 2*len(points))
    y = []
    for n, p in enumerate(refpoints):
        y += [p[0]/w[n*2], p[1]/w[n*2+1]]
    A = []
    for n, p in enumerate(points):
        A.extend([ [p[0]/w[n*2], p[1]/w[n*2], 0, 0, 1/w[n*2], 0], [0, 0, p[0]/w[n*2+1], p[1]/w[n*2+1], 0, 1/w[n*2+1]] ])
    
    lstsq = linalg.lstsq(A,y)
    h11, h12, h21, h22, dx, dy = lstsq[0]
    err = lstsq[1]

    R = np.array([[h11, h12, dx], [h21, h22, dy]])
    return R, err 
開發者ID:eranid,項目名稱:adience_align,代碼行數:19,代碼來源:landmarks.py

示例6: _compute_affine_transform_ocvlsq

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def _compute_affine_transform_ocvlsq(refpoints, points, w = None):
    if w == None:
        w = [1] * (len(points) * 2)
    assert(len(w) == 2*len(points))
    y = []
    for n, p in enumerate(refpoints):
        y += [p[0]/w[n*2], p[1]/w[n*2+1]]
    A = []
    for n, p in enumerate(points):
        A.extend([ [p[0]/w[n*2], p[1]/w[n*2], 0, 0, 1/w[n*2], 0], [0, 0, p[0]/w[n*2+1], p[1]/w[n*2+1], 0, 1/w[n*2+1]] ])
    
    lstsq = cv2.solve(np.array(A), np.array(y), flags=cv2.DECOMP_SVD)
    h11, h12, h21, h22, dx, dy = lstsq[1]
    err = 0#lstsq[1]

    #R = np.array([[h11, h12, dx], [h21, h22, dy]])
    # The row above works too - but creates a redundant dimension
    R = np.array([[h11[0], h12[0], dx[0]], [h21[0], h22[0], dy[0]]])
    return R, err 
開發者ID:eranid,項目名稱:adience_align,代碼行數:21,代碼來源:landmarks.py

示例7: sigmoid_adjust

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def sigmoid_adjust(xs, ys):
        ys_max = np.max(ys) + 0.1
        ys_min = np.min(ys) - 0.1

        # normalize to [0, 1]
        ys = list((np.array(ys) - ys_min) / (ys_max - ys_min))

        zs = -np.log(1.0 / np.array(ys).T - 1.0)
        Y_mtx = np.matrix((np.ones(len(ys)), zs)).T
        x_vec = np.matrix(xs).T
        a_b = lstsq(Y_mtx, x_vec, rcond=1)[0]
        a = a_b.item(0)
        b = a_b.item(1)

        xs = 1.0 / (1.0 + np.exp(- (np.array(xs) - a) / b))

        # denormalize
        xs = xs * (ys_max - ys_min) + ys_min

        return xs 
開發者ID:Netflix,項目名稱:sureal,代碼行數:22,代碼來源:perf_metric.py

示例8: hfd

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def hfd(X, Kmax):
	""" Compute Hjorth Fractal Dimension of a time series X, kmax
	 is an HFD parameter
	"""
	L = [];
	x = []
	N = len(X)
	for k in xrange(1,Kmax):
		Lk = []
		for m in xrange(0,k):
			Lmk = 0
			for i in xrange(1,int(floor((N-m)/k))):
				Lmk += abs(X[m+i*k] - X[m+i*k-k])
			Lmk = Lmk*(N - 1)/floor((N - m) / float(k)) / k
			Lk.append(Lmk)
		L.append(log(mean(Lk)))
		x.append([log(float(1) / k), 1])
	
	(p, r1, r2, s)=lstsq(x, L)
	return p[0] 
開發者ID:strfry,項目名稱:OpenNFB,代碼行數:22,代碼來源:pyeeg.py

示例9: do

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def do(self, a, b):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (np.asarray(abs(np.dot(a, x) - b))**2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if len(np.asarray(b).shape) == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
        assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) 
開發者ID:pfchai,項目名稱:ImageFusion,代碼行數:25,代碼來源:test_linalg.py

示例10: error

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def error(self, start, end):
        """Return the approximation cost on the segment [start:end].

        Args:
            start (int): start of the segment
            end (int): end of the segment

        Returns:
            float: segment cost

        Raises:
            NotEnoughPoints: when the segment is too short (less than ``'min_size'`` samples).
        """
        if end - start < self.min_size:
            raise NotEnoughPoints
        y, X = self.signal[start:end], self.covar[start:end]
        _, residual, _, _ = lstsq(X, y, rcond=None)
        return residual.sum() 
開發者ID:deepcharles,項目名稱:ruptures,代碼行數:20,代碼來源:costautoregressive.py

示例11: do

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def do(self, a, b, tags):
        arr = np.asarray(a)
        m, n = arr.shape
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b, rcond=-1)
        if m == 0:
            assert_((x == 0).all())
        if m <= n:
            assert_almost_equal(b, dot(a, x))
            assert_equal(rank, m)
        else:
            assert_equal(rank, n)
        assert_almost_equal(sv, sv.__array_wrap__(s))
        if rank == n and m > n:
            expect_resids = (
                np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
            expect_resids = np.asarray(expect_resids)
            if np.asarray(b).ndim == 1:
                expect_resids.shape = (1,)
                assert_equal(residuals.shape, expect_resids.shape)
        else:
            expect_resids = np.array([]).view(type(x))
        assert_almost_equal(residuals, expect_resids)
        assert_(np.issubdtype(residuals.dtype, np.floating))
        assert_(consistent_subclass(x, b))
        assert_(consistent_subclass(residuals, b)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:28,代碼來源:test_linalg.py

示例12: test_empty_a_b

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def test_empty_a_b(self, m, n, n_rhs):
        a = np.arange(m * n).reshape(m, n)
        b = np.ones((m, n_rhs))
        x, residuals, rank, s = linalg.lstsq(a, b, rcond=None)
        if m == 0:
            assert_((x == 0).all())
        assert_equal(x.shape, (n, n_rhs))
        assert_equal(residuals.shape, ((n_rhs,) if m > n else (0,)))
        if m > n and n_rhs > 0:
            # residuals are exactly the squared norms of b's columns
            r = b - np.dot(a, x)
            assert_almost_equal(residuals, (r * r).sum(axis=-2))
        assert_equal(rank, min(m, n))
        assert_equal(s.shape, (min(m, n),)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:16,代碼來源:test_linalg.py

示例13: test_incompatible_dims

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def test_incompatible_dims(self):
        # use modified version of docstring example
        x = np.array([0, 1, 2, 3])
        y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
        A = np.vstack([x, np.ones(len(x))]).T
        with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
            linalg.lstsq(A, y, rcond=None) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:9,代碼來源:test_linalg.py

示例14: test_lstsq_complex_larger_rhs

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def test_lstsq_complex_larger_rhs(self):
        # gh-9891
        size = 20
        n_rhs = 70
        G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
        u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
        b = G.dot(u)
        # This should work without segmentation fault.
        u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
        # check results just in case
        assert_array_almost_equal(u_lstsq, u) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:13,代碼來源:test_regression.py

示例15: CovarianceMaatrixAdaptionEvolutionStrategyF

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import lstsq [as 別名]
def CovarianceMaatrixAdaptionEvolutionStrategyF(task, epsilon=1e-20, rnd=rand):
	lam, alpha_mu, hs, sigma0 = (4 + round(3 * log(task.D))) * 10, 2, 0, 0.3 * task.bcRange()
	mu = int(round(lam / 2))
	w = log(mu + 0.5) - log(range(1, mu + 1))
	w = w / sum(w)
	mueff = 1 / sum(w ** 2)
	cs = (mueff + 2) / (task.D + mueff + 5)
	ds = 1 + cs + 2 * max(sqrt((mueff - 1) / (task.D + 1)) - 1, 0)
	ENN = sqrt(task.D) * (1 - 1 / (4 * task.D) + 1 / (21 * task.D ** 2))
	cc, c1 = (4 + mueff / task.D) / (4 + task.D + 2 * mueff / task.D), 2 / ((task.D + 1.3) ** 2 + mueff)
	cmu, hth = min(1 - c1, alpha_mu * (mueff - 2 + 1 / mueff) / ((task.D + 2) ** 2 + alpha_mu * mueff / 2)), (1.4 + 2 / (task.D + 1)) * ENN
	ps, pc, C, sigma, M = full(task.D, 0.0), full(task.D, 0.0), eye(task.D), sigma0, full(task.D, 0.0)
	x = rnd.uniform(task.bcLower(), task.bcUpper())
	x_f = task.eval(x)
	while not task.stopCondI():
		pop_step = asarray([rnd.multivariate_normal(full(task.D, 0.0), C) for _ in range(int(lam))])
		pop = asarray([task.repair(x + sigma * ps, rnd) for ps in pop_step])
		pop_f = apply_along_axis(task.eval, 1, pop)
		isort = argsort(pop_f)
		pop, pop_f, pop_step = pop[isort[:mu]], pop_f[isort[:mu]], pop_step[isort[:mu]]
		if pop_f[0] < x_f: x, x_f = pop[0], pop_f[0]
		M = sum(w * pop_step.T, axis=1)
		ps = solve(chol(C).conj() + epsilon, ((1 - cs) * ps + sqrt(cs * (2 - cs) * mueff) * M + epsilon).T)[0].T
		sigma *= exp(cs / ds * (norm(ps) / ENN - 1)) ** 0.3
		ifix = where(sigma == inf)
		if any(ifix): sigma[ifix] = sigma0
		if norm(ps) / sqrt(1 - (1 - cs) ** (2 * (task.Iters + 1))) < hth: hs = 1
		else: hs = 0
		delta = (1 - hs) * cc * (2 - cc)
		pc = (1 - cc) * pc + hs * sqrt(cc * (2 - cc) * mueff) * M
		C = (1 - c1 - cmu) * C + c1 * (tile(pc, [len(pc), 1]) * tile(pc.reshape([len(pc), 1]), [1, len(pc)]) + delta * C)
		for i in range(mu): C += cmu * w[i] * tile(pop_step[i], [len(pop_step[i]), 1]) * tile(pop_step[i].reshape([len(pop_step[i]), 1]), [1, len(pop_step[i])])
		E, V = eig(C)
		if any(E < epsilon):
			E = fmax(E, 0)
			C = lstsq(V.T, dot(V, diag(E)).T, rcond=None)[0].T
	return x, x_f 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:39,代碼來源:es.py


注:本文中的numpy.linalg.lstsq方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。