本文整理匯總了Python中numpy.linalg.eigvalsh方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.eigvalsh方法的具體用法?Python linalg.eigvalsh怎麽用?Python linalg.eigvalsh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.linalg
的用法示例。
在下文中一共展示了linalg.eigvalsh方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_UPLO
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO='L')
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO='l')
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO='U')
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO='u')
assert_allclose(w, tgt, rtol=rtol)
示例2: test_0_size
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float32)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
示例3: test_UPLO
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_UPLO(self):
Klo = np.array([[0, 0],[1, 0]], dtype=np.double)
Kup = np.array([[0, 1],[0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(np.sort(w), tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO='L')
assert_allclose(np.sort(w), tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO='l')
assert_allclose(np.sort(w), tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO='U')
assert_allclose(np.sort(w), tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO='u')
assert_allclose(np.sort(w), tgt, rtol=rtol)
示例4: compute_score
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def compute_score(weights, model_num, scoreFunc, derivDaggerDerivList,
forceIndices, forceScore,
nGaugeParams, opPenalty, germLengths, l1Penalty=1e-2,
scoreDict=None):
"""Returns a germ set "score" in which smaller is better. Also returns
intentionally bad score (`forceScore`) if `weights` is zero on any of
the "forced" germs (i.e. at any index in `forcedIndices`).
This function is included for use by :func:`optimize_integer_germs_slack`,
but is not convenient for just computing the score of a germ set. For that,
use :func:`calculate_germset_score`.
"""
if forceIndices is not None and _np.any(weights[forceIndices] <= 0):
score = forceScore
else:
#combinedDDD = _np.einsum('i,ijk', weights,
# derivDaggerDerivList[model_num])
combinedDDD = _np.squeeze(
_np.tensordot(_np.expand_dims(weights, 1),
derivDaggerDerivList[model_num], (0, 0)))
assert len(combinedDDD.shape) == 2
sortedEigenvals = _np.sort(_np.real(_nla.eigvalsh(combinedDDD)))
observableEigenvals = sortedEigenvals[nGaugeParams:]
score = (_scoring.list_score(observableEigenvals, scoreFunc)
+ l1Penalty * _np.sum(weights)
+ opPenalty * _np.dot(germLengths, weights))
if scoreDict is not None:
# Side effect: calling compute_score caches result in scoreDict
scoreDict[model_num, tuple(weights)] = score
return score
示例5: sq_sing_vals_from_deriv
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def sq_sing_vals_from_deriv(deriv, weights=None):
"""Calculate the squared singulare values of the Jacobian of the germ set.
Parameters
----------
deriv : numpy.array
Array of shape ``(nGerms, flattened_op_dim, vec_model_dim)``. Each
sub-array corresponding to an individual germ is the Jacobian of the
vectorized gate representation of that germ raised to some power with
respect to the model parameters, normalized by dividing by the length
of each germ after repetition.
weights : numpy.array
Array of length ``nGerms``, giving the relative contributions of each
individual germ's Jacobian to the combined Jacobian (which is calculated
as a convex combination of the individual Jacobians).
Returns
-------
numpy.array
The sorted squared singular values of the combined Jacobian of the germ
set.
"""
# shape (nGerms, vec_model_dim, vec_model_dim)
derivDaggerDeriv = _np.einsum('ijk,ijl->ikl', _np.conjugate(deriv), deriv)
# awkward to convert to tensordot, so leave as einsum
# Take the average of the D^dagger*D/L^2 matrices associated with each germ
# with optional weights.
combinedDDD = _np.average(derivDaggerDeriv, weights=weights, axis=0)
sortedEigenvals = _np.sort(_np.real(_nla.eigvalsh(combinedDDD)))
return sortedEigenvals
示例6: do
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def do(self, a, b, tags):
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a, 'L')
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
ev2 = linalg.eigvalsh(a, 'U')
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
示例7: test_types
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w = np.linalg.eigvalsh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
示例8: test_invalid
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
示例9: do
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def do(self, a, b):
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a, 'L')
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
ev2 = linalg.eigvalsh(a, 'U')
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
示例10: test_types
# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import eigvalsh [as 別名]
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w = np.linalg.eigvalsh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype