當前位置: 首頁>>代碼示例>>Python>>正文


Python linalg.LinAlgError方法代碼示例

本文整理匯總了Python中numpy.linalg.LinAlgError方法的典型用法代碼示例。如果您正苦於以下問題:Python linalg.LinAlgError方法的具體用法?Python linalg.LinAlgError怎麽用?Python linalg.LinAlgError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.linalg的用法示例。


在下文中一共展示了linalg.LinAlgError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lsim

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def lsim(self, u, t, interp=0, returnall=False, X0=None, hmax=None):
        """Find the response of the TransferFunction to the input u
        with time vector t.  Uses signal.lsim.

        return y the response of the system."""
        try:
           out = signal.lsim(self, u, t, interp=interp, X0=X0)
        except LinAlgError:
           #if the system has a pure integrator, lsim won't work.
           #Call lsim2.
           out = self.lsim2(u, t, X0=X0, returnall=True, hmax=hmax)
                 #override returnall because it is handled below
        if returnall:#most users will just want the system output y,
                     #but some will need the (t, y, x) tuple that
                     #signal.lsim returns
            return out
        else:
            return out[1]

##     def lsim2(self, u, t, returnall=False, X0=None):
##         #tempsys=signal.lti(self.num,self.den)
##         if returnall:
##             return signal.lsim2(self, u, t, X0=X0)
##         else:
##             return signal.lsim2(self, u, t, X0=X0)[1] 
開發者ID:python-control,項目名稱:python-control,代碼行數:27,代碼來源:controls.py

示例2: __call__

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def __call__(self, a):
        a = astensor(a)

        if a.ndim != 2:
            raise LinAlgError('{0}-dimensional tensor given. '
                              'Tensor must be two-dimensional'.format(a.ndim))

        tiny_q, tiny_r = np.linalg.qr(np.ones((1, 1), dtype=a.dtype))

        x, y = a.shape
        q_shape, r_shape = (a.shape, (y, y)) if x > y else ((x, x), a.shape)
        q, r = self.new_tensors([a],
                                kws=[{'side': 'q', 'dtype': tiny_q.dtype,
                                      'shape': q_shape, 'order': TensorOrder.C_ORDER},
                                     {'side': 'r', 'dtype': tiny_r.dtype,
                                      'shape': r_shape, 'order': TensorOrder.C_ORDER}])
        return ExecutableTuple([q, r]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:19,代碼來源:qr.py

示例3: execute

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def execute(cls, ctx, op):
        (a, b), device_id, xp = as_same_device(
            [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True)

        chunk = op.outputs[0]
        with device(device_id):
            if xp is np:
                import scipy.linalg

                try:
                    ctx[chunk.key] = scipy.linalg.solve_triangular(a, b, lower=op.lower)
                except np.linalg.LinAlgError:
                    if op.strict is not False:
                        raise
                    ctx[chunk.key] = np.linalg.lstsq(a, b, rcond=-1)[0]
            elif xp is cp:
                import cupyx

                ctx[chunk.key] = cupyx.scipy.linalg.solve_triangular(a, b, lower=op.lower)
            else:
                ctx[chunk.key] = xp.solve_triangular(a, b, lower=op.lower, sparse=op.sparse) 
開發者ID:mars-project,項目名稱:mars,代碼行數:23,代碼來源:solve_triangular.py

示例4: __call__

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def __call__(self, a):
        a = astensor(a)

        if a.ndim != 2:
            raise LinAlgError('{0}-dimensional tensor given. '
                              'Tensor must be two-dimensional'.format(a.ndim))

        tiny_U, tiny_s, tiny_V = np.linalg.svd(np.ones((1, 1), dtype=a.dtype))

        # if a's shape is (6, 18), U's shape is (6, 6), s's shape is (6,), V's shape is (6, 18)
        # if a's shape is (18, 6), U's shape is (18, 6), s's shape is (6,), V's shape is (6, 6)
        U_shape, s_shape, V_shape = calc_svd_shapes(a)
        U, s, V = self.new_tensors([a],
                                   order=TensorOrder.C_ORDER,
                                   kws=[
                                       {'side': 'U', 'dtype': tiny_U.dtype, 'shape': U_shape},
                                       {'side': 's', 'dtype': tiny_s.dtype, 'shape': s_shape},
                                       {'side': 'V', 'dtype': tiny_V.dtype, 'shape': V_shape}
                                   ])
        return ExecutableTuple([U, s, V]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:22,代碼來源:svd.py

示例5: get_nadir_point

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def get_nadir_point(extreme_points, ideal_point, worst_point, worst_of_front, worst_of_population):
    """ Calculate the axis intersects for a set of individuals and its extremes (construct hyperplane). """
    try:
        # find the intercepts using gaussian elimination
        M = extreme_points - ideal_point
        b = np.ones(extreme_points.shape[1])
        plane = np.linalg.solve(M, b)
        intercepts = 1 / plane

        nadir_point = ideal_point + intercepts

        if not np.allclose(np.dot(M, plane), b) or np.any(intercepts <= 1e-6) or np.any(nadir_point > worst_point):
            raise LinAlgError()
    except LinAlgError:
        nadir_point = worst_of_front

    b = nadir_point - ideal_point <= 1e-6
    nadir_point[b] = worst_of_population[b]

    return nadir_point 
開發者ID:jMetal,項目名稱:jMetalPy,代碼行數:22,代碼來源:nsgaiii.py

示例6: _safe_arma_fit

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def _safe_arma_fit(y, order, model_kw, trend, fit_kw, start_params=None):
    try:
        return ARMA(y, order=order, **model_kw).fit(disp=0, trend=trend,
                                                    start_params=start_params,
                                                    **fit_kw)
    except LinAlgError:
        # SVD convergence failure on badly misspecified models
        return

    except ValueError as error:
        if start_params is not None:  # don't recurse again
            # user supplied start_params only get one chance
            return
        # try a little harder, should be handled in fit really
        elif ('initial' not in error.args[0] or 'initial' in str(error)):
            start_params = [.1] * sum(order)
            if trend == 'c':
                start_params = [.1] + start_params
            return _safe_arma_fit(y, order, model_kw, trend, fit_kw,
                                  start_params)
        else:
            return
    except:  # no idea what happened
        return 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:26,代碼來源:stattools.py

示例7: test_State_algebra_truediv_rtruediv

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_State_algebra_truediv_rtruediv():
    G = State(1, 2, 3, 4)
    F = G/0.5
    assert_equal(F.b, np.array([[4.]]))
    assert_equal(F.d, np.array([[8.]]))
    G.d = 0.
    with assert_raises(LinAlgError):
        G/G
    with assert_raises(ValueError):
        G/3j

    G.d = 4
    # nonminimal but acceptable
    H = G / G
    ha, hb, hc, hd = H.matrices

    assert_array_almost_equal(ha, [[1, -1.5], [0, -0.5]])
    assert_array_almost_equal(hb, [[0.5], [0.5]])
    assert_array_almost_equal(hc, [[3, -3]])
    assert_array_almost_equal(hd, [[1]])

    G = State(np.eye(3)*0.5)
    assert_array_almost_equal((1 / G).to_array(), np.eye(3)*2) 
開發者ID:ilayn,項目名稱:harold,代碼行數:25,代碼來源:test_classes.py

示例8: fast_optimize

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def fast_optimize(endog, exog, n_obs=0, n_vars=0, max_iter=10000, tolerance=1e-10):
    """
    A convenience function for the Newton-Raphson method to evaluate a logistic model.
    :param endog: Nx1 vector of endogenous predictions
    :param exog: NxK vector of exogenous predictors
    :param n_obs: Number of observations N
    :param n_vars: Number of exogenous predictors K
    :param max_iter: Maximum number of iterations
    :param tolerance: Margin of error for convergence
    :return: The error-minimizing parameters for the model.
    """
    iterations = 0
    oldparams = np.inf
    newparams = np.repeat(0, n_vars)
    while iterations < max_iter and np.any(np.abs(newparams - oldparams) > tolerance):
        oldparams = newparams
        try:
            H = logit_hessian(exog, oldparams, n_obs)
            newparams = oldparams - dot(
                inv(H), logit_score(endog, exog, oldparams, n_obs)
            )
        except LinAlgError:
            raise LinAlgError
        iterations += 1
    return newparams 
開發者ID:QuentinAndre,項目名稱:pyprocessmacro,代碼行數:27,代碼來源:utils.py

示例9: get_nadir_point

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def get_nadir_point(extreme_points, ideal_point, worst_point, worst_of_front, worst_of_population):
    try:

        # find the intercepts using gaussian elimination
        M = extreme_points - ideal_point
        b = np.ones(extreme_points.shape[1])
        plane = np.linalg.solve(M, b)

        warnings.simplefilter("ignore")
        intercepts = 1 / plane

        nadir_point = ideal_point + intercepts

        # check if the hyperplane makes sense
        if not np.allclose(np.dot(M, plane), b) or np.any(intercepts <= 1e-6):
            raise LinAlgError()

        # if the nadir point should be larger than any value discovered so far set it to that value
        # NOTE: different to the proposed version in the paper
        b = nadir_point > worst_point
        nadir_point[b] = worst_point[b]

    except LinAlgError:

        # fall back to worst of front otherwise
        nadir_point = worst_of_front

    # if the range is too small set it to worst of population
    b = nadir_point - ideal_point <= 1e-6
    nadir_point[b] = worst_of_population[b]

    return nadir_point 
開發者ID:msu-coinlab,項目名稱:pymoo,代碼行數:34,代碼來源:nsga3.py

示例10: test_0_size

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_0_size(self):
        class ArraySubclass(np.ndarray):
            pass
        # Test system of 0x0 matrices
        a = np.arange(8).reshape(2, 2, 2)
        b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)

        expected = linalg.solve(a, b)[:, 0:0, :]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        # Test errors for non-square and only b's dimension being 0
        assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
        assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])

        # Test broadcasting error
        b = np.arange(6).reshape(1, 3, 2)  # broadcasting error
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])

        # Test zero "single equations" with 0x0 matrices.
        b = np.arange(2).reshape(1, 2).view(ArraySubclass)
        expected = linalg.solve(a, b)[:, 0:0]
        result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
        assert_array_equal(result, expected)
        assert_(isinstance(result, ArraySubclass))

        b = np.arange(3).reshape(1, 3)
        assert_raises(ValueError, linalg.solve, a, b)
        assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
        assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:34,代碼來源:test_linalg.py

示例11: do

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def do(self, a, b, tags):
        c = asarray(a)  # a might be a matrix
        if 'size-0' in tags:
            assert_raises(LinAlgError, linalg.cond, c)
            return

        # +-2 norms
        s = linalg.svd(c, compute_uv=False)
        assert_almost_equal(
            linalg.cond(a), s[..., 0] / s[..., -1],
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, 2), s[..., 0] / s[..., -1],
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -2), s[..., -1] / s[..., 0],
            single_decimal=5, double_decimal=11)

        # Other norms
        cinv = np.linalg.inv(c)
        assert_almost_equal(
            linalg.cond(a, 1),
            abs(c).sum(-2).max(-1) * abs(cinv).sum(-2).max(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -1),
            abs(c).sum(-2).min(-1) * abs(cinv).sum(-2).min(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, np.inf),
            abs(c).sum(-1).max(-1) * abs(cinv).sum(-1).max(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, -np.inf),
            abs(c).sum(-1).min(-1) * abs(cinv).sum(-1).min(-1),
            single_decimal=5, double_decimal=11)
        assert_almost_equal(
            linalg.cond(a, 'fro'),
            np.sqrt((abs(c)**2).sum(-1).sum(-1)
                    * (abs(cinv)**2).sum(-1).sum(-1)),
            single_decimal=5, double_decimal=11) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:43,代碼來源:test_linalg.py

示例12: test_incompatible_dims

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_incompatible_dims(self):
        # use modified version of docstring example
        x = np.array([0, 1, 2, 3])
        y = np.array([-1, 0.2, 0.9, 2.1, 3.3])
        A = np.vstack([x, np.ones(len(x))]).T
        with assert_raises_regex(LinAlgError, "Incompatible dimensions"):
            linalg.lstsq(A, y, rcond=None) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:9,代碼來源:test_linalg.py

示例13: test_exceptions_non_square

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_exceptions_non_square(self, dt):
        assert_raises(LinAlgError, matrix_power, np.array([1], dt), 1)
        assert_raises(LinAlgError, matrix_power, np.array([[1], [2]], dt), 1)
        assert_raises(LinAlgError, matrix_power, np.ones((4, 3, 2), dt), 1) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:6,代碼來源:test_linalg.py

示例14: test_exceptions_not_invertible

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_exceptions_not_invertible(self, dt):
        if dt in self.dtnoinv:
            return
        mat = self.noninv.astype(dt)
        assert_raises(LinAlgError, matrix_power, mat, -1) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:test_linalg.py

示例15: test_non_square_handling

# 需要導入模塊: from numpy import linalg [as 別名]
# 或者: from numpy.linalg import LinAlgError [as 別名]
def test_non_square_handling(self, arr, ind):
        with assert_raises(LinAlgError):
            linalg.tensorinv(arr, ind=ind) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:5,代碼來源:test_linalg.py


注:本文中的numpy.linalg.LinAlgError方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。