本文整理匯總了Python中numpy.lib.stride_tricks.as_strided方法的典型用法代碼示例。如果您正苦於以下問題:Python stride_tricks.as_strided方法的具體用法?Python stride_tricks.as_strided怎麽用?Python stride_tricks.as_strided使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.lib.stride_tricks
的用法示例。
在下文中一共展示了stride_tricks.as_strided方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: handle_rolling
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def handle_rolling(agg, granularity, timestamps, values, is_aggregated,
references, window):
if window > len(values):
raise exceptions.UnAggregableTimeseries(
references,
"Rolling window '%d' is greater than serie length '%d'" %
(window, len(values))
)
timestamps = timestamps[window - 1:]
values = values.T
# rigtorp.se/2011/01/01/rolling-statistics-numpy.html
shape = values.shape[:-1] + (values.shape[-1] - window + 1, window)
strides = values.strides + (values.strides[-1],)
new_values = AGG_MAP[agg](as_strided(values, shape=shape, strides=strides),
axis=-1)
if agg.startswith("rate:"):
timestamps = timestamps[1:]
return granularity, timestamps, new_values.T, is_aggregated
示例2: _windowed_view
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def _windowed_view(x, window_size):
"""Create a 2d windowed view of a 1d array.
`x` must be a 1d numpy array.
`numpy.lib.stride_tricks.as_strided` is used to create the view.
The data is not copied.
Example:
>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> _windowed_view(x, 3)
array([[1, 2, 3],
[2, 3, 4],
[3, 4, 5],
[4, 5, 6]])
"""
y = as_strided(x, shape=(x.size - window_size + 1, window_size),
strides=(x.strides[0], x.strides[0]))
return y
示例3: initialize
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def initialize(self, model):
super(CategoricalCovStruct, self).initialize(model)
self.nlevel = len(model.endog_values)
self._ncut = self.nlevel - 1
from numpy.lib.stride_tricks import as_strided
b = np.dtype(np.int64).itemsize
ibd = []
for v in model.endog_li:
jj = np.arange(0, len(v) + 1, self._ncut, dtype=np.int64)
jj = as_strided(jj, shape=(len(jj) - 1, 2), strides=(b, b))
ibd.append(jj)
self.ibd = ibd
示例4: _strided_from_memmap
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def _strided_from_memmap(filename, dtype, mode, offset, order, shape, strides,
total_buffer_len):
"""Reconstruct an array view on a memory mapped file."""
if mode == 'w+':
# Do not zero the original data when unpickling
mode = 'r+'
if strides is None:
# Simple, contiguous memmap
return make_memmap(filename, dtype=dtype, shape=shape, mode=mode,
offset=offset, order=order)
else:
# For non-contiguous data, memmap the total enclosing buffer and then
# extract the non-contiguous view with the stride-tricks API
base = make_memmap(filename, dtype=dtype, shape=total_buffer_len,
mode=mode, offset=offset, order=order)
return as_strided(base, shape=shape, strides=strides)
示例5: sine_window
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def sine_window(X):
"""
Apply a sinusoid window to X.
Parameters
----------
X : ndarray, shape=(n_samples, n_features)
Input array of samples
Returns
-------
X_windowed : ndarray, shape=(n_samples, n_features)
Windowed version of X.
"""
i = np.arange(X.shape[1])
win = np.sin(np.pi * (i + 0.5) / X.shape[1])
row_stride = 0
col_stride = win.itemsize
strided_win = as_strided(win, shape=X.shape,
strides=(row_stride, col_stride))
return X * strided_win
示例6: kaiserbessel_window
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def kaiserbessel_window(X, alpha=6.5):
"""
Apply a Kaiser-Bessel window to X.
Parameters
----------
X : ndarray, shape=(n_samples, n_features)
Input array of samples
alpha : float, optional (default=6.5)
Tuning parameter for Kaiser-Bessel function. alpha=6.5 should make
perfect reconstruction possible for DCT.
Returns
-------
X_windowed : ndarray, shape=(n_samples, n_features)
Windowed version of X.
"""
beta = np.pi * alpha
win = sg.kaiser(X.shape[1], beta)
row_stride = 0
col_stride = win.itemsize
strided_win = as_strided(win, shape=X.shape,
strides=(row_stride, col_stride))
return X * strided_win
示例7: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(sig, frame_size, overlap_fac=0.5, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frame_size)
hop_size = int(frame_size - np.floor(overlap_fac * frame_size))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frame_size / 2.0)), sig)
# cols for windowing
cols = np.ceil((len(samples) - frame_size) / float(hop_size)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frame_size))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frame_size),
strides=(
samples.strides[0] * hop_size,
samples.strides[0]
)
).copy()
frames *= win
return np.fft.rfft(frames)
示例8: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
# samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
samples = np.array(sig, dtype='float64')
# cols for windowing
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
# samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
示例9: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
# samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
samples = np.array(sig, dtype='float64')
# cols for windowing
cols = np.floor((len(samples) - frameSize) / float(hopSize))
# zeros at end (thus samples can be fully covered by frames)
# samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
示例10: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(sig, frameSize, overlapFac=0.75, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
# samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
samples = np.array(sig, dtype='float64')
# cols for windowing
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
# samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
# all the definition of the flowing variable can be found
# train_net.py
示例11: extract_patches
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def extract_patches(arr, patch_shape=(32,32,3), extraction_step=32):
arr_ndim = arr.ndim
if isinstance(patch_shape, numbers.Number):
patch_shape = tuple([patch_shape] * arr_ndim)
if isinstance(extraction_step, numbers.Number):
extraction_step = tuple([extraction_step] * arr_ndim)
patch_strides = arr.strides
slices = tuple(slice(None, None, st) for st in extraction_step)
indexing_strides = arr[slices].strides
patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) //
np.array(extraction_step)) + 1
shape = tuple(list(patch_indices_shape) + list(patch_shape))
strides = tuple(list(indexing_strides) + list(patch_strides))
patches = as_strided(arr, shape=shape, strides=strides)
return patches
示例12: kh_make_patches
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def kh_make_patches(arr, patch_shape=2, extraction_step=1):
arr_ndim = arr.ndim
if isinstance(patch_shape, numbers.Number):
patch_shape = tuple([patch_shape] * arr_ndim)
if isinstance(extraction_step, numbers.Number):
extraction_step = tuple([extraction_step] * arr_ndim)
patch_strides = arr.strides
slices = [slice(None, None, st) for st in extraction_step]
indexing_strides = arr[slices].strides
patch_indices_shape = (np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step) + 1
shape = tuple(list(patch_indices_shape) + list(patch_shape))
strides = tuple(list(indexing_strides) + list(patch_strides))
patches = as_strided(arr, shape=shape, strides=strides)
return patches, shape
示例13: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(self, sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frameSize / 2.0)), sig)
# cols for windowing
cols = np.ceil((len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize),
strides=(samples.strides[0] * hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
示例14: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(self, sig):
"""
Short term fourier transform.
Parameters
----------
sig : ndarray
signal
Returns
-------
windowed fourier transformed signal
"""
s = np.pad(sig, (self.wlen//2, 0), 'constant')
cols = int(np.ceil((s.shape[0] - self.wlen) / self.fshift + 1))
s = np.pad(s, (0, self.wlen), 'constant')
frames = as_strided(s, shape=(cols, self.wlen),
strides=(s.strides[0]*self.fshift,
s.strides[0])).copy()
return np.fft.rfft(frames*self.win, self.NFFT)
示例15: stft
# 需要導入模塊: from numpy.lib import stride_tricks [as 別名]
# 或者: from numpy.lib.stride_tricks import as_strided [as 別名]
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)
# cols for windowing
cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)