本文整理匯總了Python中numpy.lib.recfunctions.stack_arrays方法的典型用法代碼示例。如果您正苦於以下問題:Python recfunctions.stack_arrays方法的具體用法?Python recfunctions.stack_arrays怎麽用?Python recfunctions.stack_arrays使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.lib.recfunctions
的用法示例。
在下文中一共展示了recfunctions.stack_arrays方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: stack_rows
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def stack_rows(args):
"""Returns a structured array containing all the rows in its arguments
Each argument must be a structured array with the same column names
and column types. Similar to SQL UNION
"""
if len(args) > 0:
M0 = check_sa(args[0], argument_name='args[0]')
dtype0 = M0.dtype
checked_args = [M0]
for idx, M in enumerate(args[1:]):
M = check_sa(M)
if dtype0 != M.dtype:
raise ValueError('args[{}] does not have the same dtype as '
'args[0]'.format(idx + 1))
checked_args.append(M)
args = checked_args
return nprf.stack_arrays(args, usemask=False)
示例2: get_nested_samples
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def get_nested_samples(self, filename='nested_samples.dat'):
"""
returns nested sampling chain
Parameters
----------
filename : string
If given, file to save nested samples to
Returns
-------
pos : :obj:`numpy.ndarray`
"""
import numpy.lib.recfunctions as rfn
self.nested_samples = rfn.stack_arrays(
[s.asnparray()
for s in self.NS.nested_samples]
,usemask=False)
if filename:
np.savetxt(os.path.join(
self.NS.output_folder,'nested_samples.dat'),
self.nested_samples.ravel(),
header=' '.join(self.nested_samples.dtype.names),
newline='\n',delimiter=' ')
return self.nested_samples
示例3: stack
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def stack(self, r, *args, **kwargs):
"""
Superposes arrays fields by fields inplace
t.stack(t1, t2, t3, default=None, inplace=True)
Parameters
----------
r: Table
"""
if not hasattr(r, 'data'):
raise AttributeError('r should be a Table object')
defaults = kwargs.get('defaults', None)
inplace = kwargs.get('inplace', False)
data = [self.data, r.data] + [k.data for k in args]
sdata = recfunctions.stack_arrays(data, defaults, usemask=False,
asrecarray=True)
if inplace:
self.data = sdata
else:
t = self.__class__(self)
t.data = sdata
return t
示例4: stack
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def stack(self, r, defaults=None):
"""
Superposes arrays fields by fields inplace
Parameters
----------
r: Table
"""
if not hasattr(r, 'data'):
raise AttributeError('r should be a Table object')
self.data = recfunctions.stack_arrays([self.data, r.data], defaults,
usemask=False, asrecarray=True)
示例5: reset
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def reset(self):
"""
Initialise the sampler by generating :int:`poolsize` `cpnest.parameter.LivePoint`
and distributing them according to :obj:`cpnest.model.Model.log_prior`
"""
np.random.seed(seed=self.seed)
for n in tqdm(range(self.poolsize), desc='SMPLR {} init draw'.format(self.thread_id),
disable= not self.verbose, position=self.thread_id, leave=False):
while True: # Generate an in-bounds sample
p = self.model.new_point()
p.logP = self.model.log_prior(p)
if np.isfinite(p.logP): break
p.logL=self.model.log_likelihood(p)
if p.logL is None or not np.isfinite(p.logL):
self.logger.warning("Received non-finite logL value {0} with parameters {1}".format(str(p.logL), str(p)))
self.logger.warning("You may want to check your likelihood function to improve sampling")
self.evolution_points.append(p)
self.proposal.set_ensemble(self.evolution_points)
# Now, run evolution so samples are drawn from actual prior
for k in tqdm(range(self.poolsize), desc='SMPLR {} init evolve'.format(self.thread_id),
disable= not self.verbose, position=self.thread_id, leave=False):
_, p = next(self.yield_sample(-np.inf))
if self.verbose >= 3:
# save the poolsize as prior samples
prior_samples = []
for k in tqdm(range(self.maxmcmc), desc='SMPLR {} generating prior samples'.format(self.thread_id),
disable= not self.verbose, position=self.thread_id, leave=False):
_, p = next(self.yield_sample(-np.inf))
prior_samples.append(p)
prior_samples = rfn.stack_arrays([prior_samples[j].asnparray()
for j in range(0,len(prior_samples))],usemask=False)
np.savetxt(os.path.join(self.output,'prior_samples_%s.dat'%os.getpid()),
prior_samples.ravel(),header=' '.join(prior_samples.dtype.names),
newline='\n',delimiter=' ')
self.logger.critical("Sampler process {0!s}: saved {1:d} prior samples in {2!s}".format(os.getpid(),self.maxmcmc,'prior_samples_%s.dat'%os.getpid()))
self.prior_samples = prior_samples
self.proposal.set_ensemble(self.evolution_points)
self.initialised=True
示例6: centerofmass_all
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def centerofmass_all(self):
# Align all by center of mass
n_channels = len(self.locs)
out_locs_x = []
out_locs_y = []
out_locs_z = []
for j in range(n_channels):
sel_locs_x = []
sel_locs_y = []
sel_locs_z = []
# stack arrays
sel_locs_x = self.locs[j].x
sel_locs_y = self.locs[j].y
sel_locs_z = self.locs[j].z
out_locs_x.append(sel_locs_x)
out_locs_y.append(sel_locs_y)
out_locs_z.append(sel_locs_z)
out_locs_x = stack_arrays(out_locs_x, asrecarray=True, usemask=False)
out_locs_y = stack_arrays(out_locs_y, asrecarray=True, usemask=False)
out_locs_z = stack_arrays(out_locs_z, asrecarray=True, usemask=False)
mean_x = np.mean(out_locs_x)
mean_y = np.mean(out_locs_y)
mean_z = np.mean(out_locs_z)
for j in range(n_channels):
self.locs[j].x -= mean_x
self.locs[j].y -= mean_y
self.locs[j].z -= mean_z
示例7: concatenate
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def concatenate(samplesets, defaults=None):
"""Combine sample sets.
Args:
samplesets (iterable[:obj:`.SampleSet`):
Iterable of sample sets.
defaults (dict, optional):
Dictionary mapping data vector names to the corresponding default values.
Returns:
:obj:`.SampleSet`: A sample set with the same vartype and variable order as the first
given in `samplesets`.
Examples:
>>> a = dimod.SampleSet.from_samples(([-1, +1], 'ab'), dimod.SPIN, energy=-1)
>>> b = dimod.SampleSet.from_samples(([-1, +1], 'ba'), dimod.SPIN, energy=-1)
>>> ab = dimod.concatenate((a, b))
>>> ab.record.sample
array([[-1, 1],
[ 1, -1]], dtype=int8)
"""
itertup = iter(samplesets)
try:
first = next(itertup)
except StopIteration:
raise ValueError("samplesets must contain at least one SampleSet")
vartype = first.vartype
variables = first.variables
records = [first.record]
records.extend(_iter_records(itertup, vartype, variables))
# dev note: I was able to get ~2x performance boost when trying to
# implement the same functionality here by hand (I didn't know that
# this function existed then). However I think it is better to use
# numpy's function and rely on their testing etc. If however this becomes
# a performance bottleneck in the future, it might be worth changing.
record = recfunctions.stack_arrays(records, defaults=defaults,
asrecarray=True, usemask=False)
return SampleSet(record, variables, {}, vartype)
示例8: get_posterior_samples
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def get_posterior_samples(self, filename='posterior.dat'):
"""
Returns posterior samples
Parameters
----------
filename : string
If given, file to save posterior samples to
Returns
-------
pos : :obj:`numpy.ndarray`
"""
import numpy as np
import os
from .nest2pos import draw_posterior_many
nested_samples = self.get_nested_samples()
posterior_samples = draw_posterior_many([nested_samples],[self.nlive],verbose=self.verbose)
posterior_samples = np.array(posterior_samples)
self.prior_samples = {n:None for n in self.user.names}
self.mcmc_samples = {n:None for n in self.user.names}
# if we run with full verbose, read in and output
# the mcmc thinned posterior samples
if self.verbose >= 3:
from .nest2pos import resample_mcmc_chain
from numpy.lib.recfunctions import stack_arrays
prior_samples = []
mcmc_samples = []
for file in os.listdir(self.NS.output_folder):
if 'prior_samples' in file:
prior_samples.append(np.genfromtxt(os.path.join(self.NS.output_folder,file), names = True))
os.system('rm {0}'.format(os.path.join(self.NS.output_folder,file)))
elif 'mcmc_chain' in file:
mcmc_samples.append(resample_mcmc_chain(np.genfromtxt(os.path.join(self.NS.output_folder,file), names = True)))
os.system('rm {0}'.format(os.path.join(self.NS.output_folder,file)))
# first deal with the prior samples
self.prior_samples = stack_arrays([p for p in prior_samples])
if filename:
np.savetxt(os.path.join(
self.NS.output_folder,'prior.dat'),
self.prior_samples.ravel(),
header=' '.join(self.prior_samples.dtype.names),
newline='\n',delimiter=' ')
# now stack all the mcmc chains
self.mcmc_samples = stack_arrays([p for p in mcmc_samples])
if filename:
np.savetxt(os.path.join(
self.NS.output_folder,'mcmc.dat'),
self.mcmc_samples.ravel(),
header=' '.join(self.mcmc_samples.dtype.names),
newline='\n',delimiter=' ')
# TODO: Replace with something to output samples in whatever format
if filename:
np.savetxt(os.path.join(
self.NS.output_folder,'posterior.dat'),
posterior_samples.ravel(),
header=' '.join(posterior_samples.dtype.names),
newline='\n',delimiter=' ')
return posterior_samples
示例9: calculate_fret
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def calculate_fret(acc_locs, don_locs):
"""
Calculate the FRET efficiceny in picked regions, this is for one trace
"""
fret_dict = {}
if len(acc_locs) == 0:
max_frames = _np.max(don_locs["frame"])
elif len(don_locs) == 0:
max_frames = _np.max(acc_locs["frame"])
else:
max_frames = _np.max(
[_np.max(acc_locs["frame"]), _np.max(don_locs["frame"])]
)
# Initialize a vector filled with zeros for the duration of the movie
xvec = _np.arange(max_frames + 1)
yvec = xvec[:] * 0
acc_trace = yvec.copy()
don_trace = yvec.copy()
# Fill vector with the photon numbers of events that happend
acc_trace[acc_locs["frame"]] = acc_locs["photons"] - acc_locs["bg"]
don_trace[don_locs["frame"]] = don_locs["photons"] - don_locs["bg"]
# Calculate the FRET efficiency
fret_trace = acc_trace / (acc_trace + don_trace)
# Only select FRET values between 0 and 1
selector = _np.logical_and(fret_trace > 0, fret_trace < 1)
# Select the final fret events based on the 0 to 1 range
fret_events = fret_trace[selector]
fret_timepoints = _np.arange(len(fret_trace))[selector]
f_locs = []
if len(fret_timepoints) > 0:
# Calculate FRET locs: Select the locs when FRET happens
sel_locs = []
for element in fret_timepoints:
sel_locs.append(don_locs[don_locs["frame"] == element])
f_locs = stack_arrays(sel_locs, asrecarray=True, usemask=False)
f_locs = _lib.append_to_rec(f_locs, _np.array(fret_events), "fret")
fret_dict["fret_events"] = _np.array(fret_events)
fret_dict["fret_timepoints"] = fret_timepoints
fret_dict["acc_trace"] = acc_trace
fret_dict["don_trace"] = don_trace
fret_dict["frames"] = xvec
fret_dict["maxframes"] = max_frames
return fret_dict, f_locs
示例10: centerofmass
# 需要導入模塊: from numpy.lib import recfunctions [as 別名]
# 或者: from numpy.lib.recfunctions import stack_arrays [as 別名]
def centerofmass(self):
print("Aligning by center of mass.. ", end="", flush=True)
n_groups = self.n_groups
n_channels = len(self.locs)
progress = lib.ProgressDialog(
"Aligning by center of mass", 0, n_groups, self
)
progress.set_value(0)
for i in range(n_groups):
out_locs_x = []
out_locs_y = []
out_locs_z = []
for j in range(n_channels):
sel_locs_x = []
sel_locs_y = []
sel_locs_z = []
index = self.group_index[j][i, :].nonzero()[1]
# stack arrays
sel_locs_x = self.locs[j].x[index]
sel_locs_y = self.locs[j].y[index]
sel_locs_z = self.locs[j].z[index]
out_locs_x.append(sel_locs_x)
out_locs_y.append(sel_locs_y)
out_locs_z.append(sel_locs_z)
progress.set_value(i + 1)
out_locs_x = stack_arrays(
out_locs_x, asrecarray=True, usemask=False
)
out_locs_y = stack_arrays(
out_locs_y, asrecarray=True, usemask=False
)
out_locs_z = stack_arrays(
out_locs_z, asrecarray=True, usemask=False
)
mean_x = np.mean(out_locs_x)
mean_y = np.mean(out_locs_y)
mean_z = np.mean(out_locs_z)
for j in range(n_channels):
index = self.group_index[j][i, :].nonzero()[1]
self.locs[j].x[index] -= mean_x
self.locs[j].y[index] -= mean_y
self.locs[j].z[index] -= mean_z
self.calculate_radii()
self.updateLayout()
print("Complete.")