本文整理匯總了Python中numpy.less方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.less方法的具體用法?Python numpy.less怎麽用?Python numpy.less使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.less方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def __init__(self, monitor='val_loss',
min_delta=1e-6, patience=5,mode='min'):
#{{{
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.min_delta = min_delta
self.wait = 0
self.stopped_epoch = 0
self.stop_training=False;
if mode =="min":
self.monitor_op = np.less;
elif mode == "max":
self.monitor_op = np.greater;
else:
assert 0,"unknown early stop mode:";
self.min_delta *= -1
#}}}
示例2: subcurve
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def subcurve(self, t0, t1):
'''
curve.subcurve(t0, t1) yields a curve-spline object that is equivalent to the given
curve but that extends from curve(t0) to curve(t1) only.
'''
# if t1 is less than t0, then we want to actually do this in reverse...
if t1 == t0: raise ValueError('Cannot take subcurve of a point')
if t1 < t0:
tt = self.curve_length()
return self.reverse().subcurve(tt - t0, tt - t1)
idx = [ii for (ii,t) in enumerate(self.t) if t0 < t and t < t1]
pt0 = self(t0)
pt1 = self(t1)
coords = np.vstack([[pt0], self.coordinates.T[idx], [pt1]])
ts = np.concatenate([[t0], self.t[idx], [t1]])
dists = None if self.distances is None else np.diff(ts)
return CurveSpline(
coords.T,
order=self.order,
smoothing=self.smoothing,
periodic=False,
distances=dists,
meta_data=self.meta_data)
示例3: test_lesser
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_lesser():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Less", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"lesser_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.less(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例4: prune_non_overlapping_boxes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def prune_non_overlapping_boxes(boxlist1, boxlist2, minoverlap=0.0):
"""Prunes the boxes in boxlist1 that overlap less than thresh with boxlist2.
For each box in boxlist1, we want its IOA to be more than minoverlap with
at least one of the boxes in boxlist2. If it does not, we remove it.
Args:
boxlist1: BoxList holding N boxes.
boxlist2: BoxList holding M boxes.
minoverlap: Minimum required overlap between boxes, to count them as
overlapping.
Returns:
A pruned boxlist with size [N', 4].
"""
intersection_over_area = ioa(boxlist2, boxlist1) # [M, N] tensor
intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor
keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
keep_inds = np.nonzero(keep_bool)[0]
new_boxlist1 = gather(boxlist1, keep_inds)
return new_boxlist1
示例5: test_datetime_compare_nat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_datetime_compare_nat(self):
dt_nat = np.datetime64('NaT', 'D')
dt_other = np.datetime64('2000-01-01')
td_nat = np.timedelta64('NaT', 'h')
td_other = np.timedelta64(1, 'h')
for op in [np.equal, np.less, np.less_equal,
np.greater, np.greater_equal]:
assert_(not op(dt_nat, dt_nat))
assert_(not op(dt_nat, dt_other))
assert_(not op(dt_other, dt_nat))
assert_(not op(td_nat, td_nat))
assert_(not op(td_nat, td_other))
assert_(not op(td_other, td_nat))
assert_(np.not_equal(dt_nat, dt_nat))
assert_(np.not_equal(dt_nat, dt_other))
assert_(np.not_equal(dt_other, dt_nat))
assert_(np.not_equal(td_nat, td_nat))
assert_(np.not_equal(td_nat, td_other))
assert_(np.not_equal(td_other, td_nat))
示例6: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例7: argmin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def argmin(self, axis=None, out=None):
"""Return indices of minimum elements along an axis.
Implicit zero elements are also taken into account. If there are
several minimum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmin is computed. If None (default), index
of the minimum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : np.matrix or int
Indices of minimum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmin, np.less)
示例8: _reset
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode), RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
示例9: test_minmax_func
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_minmax_func(self):
# Tests minimum and maximum.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# max doesn't work if shaped
xr = np.ravel(x)
xmr = ravel(xm)
# following are true because of careful selection of data
assert_equal(max(xr), maximum(xmr))
assert_equal(min(xr), minimum(xmr))
assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
x = arange(5)
y = arange(5) - 2
x[3] = masked
y[0] = masked
assert_equal(minimum(x, y), where(less(x, y), x, y))
assert_equal(maximum(x, y), where(greater(x, y), x, y))
assert_(minimum(x) == 0)
assert_(maximum(x) == 4)
x = arange(4).reshape(2, 2)
x[-1, -1] = masked
assert_equal(maximum(x), 2)
示例10: test_identity_equality_mismatch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_identity_equality_mismatch(self):
a = np.array([np.nan], dtype=object)
with warnings.catch_warnings():
warnings.filterwarnings('always', '', FutureWarning)
assert_warns(FutureWarning, np.equal, a, a)
assert_warns(FutureWarning, np.not_equal, a, a)
with warnings.catch_warnings():
warnings.filterwarnings('error', '', FutureWarning)
assert_raises(FutureWarning, np.equal, a, a)
assert_raises(FutureWarning, np.not_equal, a, a)
# And the other do not warn:
with np.errstate(invalid='ignore'):
np.less(a, a)
np.greater(a, a)
np.less_equal(a, a)
np.greater_equal(a, a)
示例11: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例12: __gt__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def __gt__(self, other):
if isinstance(other, Longitude):
if self.hemisphere == 'W':
if other.hemisphere == 'E':
return False
else:
return self.longitude < other.longitude
else:
if other.hemisphere == 'W':
return True
else:
return self.longitude > other.longitude
else:
return xr.apply_ufunc(np.less, other, self)
示例13: on_train_begin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def on_train_begin(self):
self.wait = 0 # Allow instances to be re-used
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
示例14: nan_compare
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def nan_compare(f, x, y, nan_nan=False, nan_val=False, val_nan=False):
'''
nan_compare(f, x, y) is equivalent to f(x, y), which is assumed to be a boolean function that
broadcasts over x and y (such as numpy.less), except that NaN values in either x or y result
in a value of False instead of being run through f.
The argument f must be a numpy comparison function such as numpy.less that accepts the optional
arguments where and out.
The following optional arguments may be provided:
* nan_nan (default: False) specifies the return value (True or False) for comparisons
equivalent to f(nan, nan).
* nan_val (default: False) specifies the return value (True or False) for comparisons
equivalent to f(nan, non_nan).
* val_nan (default: False) specifies the return value (True or False) for comparisons
equivalent to f(non_nan, nan).
'''
#TODO: This should work with sparse matrices as well
x = np.asanyarray(x)
y = np.asanyarray(y)
xii = np.isnan(x)
yii = np.isnan(y)
if not xii.any() and not yii.any(): return f(x, y)
ii = (~xii) & (~yii)
out = np.zeros(ii.shape, dtype=np.bool)
if nan_nan == nan_val and nan_val == val_nan:
# All the nan-result values are the same; we can simplify a little...
if nan_nan: out[~ii] = nan_nan
else:
if nan_nan: out[ xii & yii] = nan_nan
if nan_val: out[ xii & (~yii)] = nan_val
if val_nan: out[(~xii) & yii] = val_nan
return f(x, y, out=out, where=ii)
示例15: nanlt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import less [as 別名]
def nanlt(x, y, nan_nan=False, nan_val=False, val_nan=False):
'''
nanlt(x, y) is equivalent to (x < y) except that NaN values in either x or y result in False.
The following optional arguments may be provided:
* nan_nan (default: False) specifies the return value (True or False) for comparisons
equivalent to nanlt(nan, nan).
* nan_val (default: False) specifies the return value (True or False) for comparisons
equivalent to nanlt(nan, 0).
* val_nan (default: False) specifies the return value (True or False) for comparisons
equivalent to nan;t(nan, 0).
'''
return nan_compare(np.less, x, y, nan_nan=nan_nan, nan_val=nan_val, val_nan=val_nan)