本文整理匯總了Python中numpy.left_shift方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.left_shift方法的具體用法?Python numpy.left_shift怎麽用?Python numpy.left_shift使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.left_shift方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例2: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例3: show
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def show(self, output_array):
import _rpi_ws281x as ws # pylint: disable=import-error
# Typecast the array to int
output_array = output_array.clip(0, 255).astype(int)
# sort the colors. grb
g = np.left_shift(output_array[1][:].astype(int), 16) # pylint: disable=assignment-from-no-return
r = np.left_shift(output_array[0][:].astype(int), 8) # pylint: disable=assignment-from-no-return
b = output_array[2][:].astype(int)
rgb = np.bitwise_or(np.bitwise_or(r, g), b).astype(int)
# You can only use ws2811_leds_set with the custom version.
#ws.ws2811_leds_set(self.channel, rgb)
for i in range(self._led_count):
ws.ws2811_led_set(self.channel, i, rgb[i].item())
resp = ws.ws2811_render(self._leds)
if resp != ws.WS2811_SUCCESS:
message = ws.ws2811_get_return_t_str(resp)
raise RuntimeError('ws2811_render failed with code {0} ({1})'.format(resp, message))
示例4: show
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def show(self, pixels):
"""Writes new LED values to the Raspberry Pi's LED strip
Raspberry Pi uses the rpi_ws281x to control the LED strip directly.
This function updates the LED strip with new values.
"""
# Truncate values and cast to integer
n_pixels = pixels.shape[1]
pixels = pixels.clip(0, 255).astype(int)
# Optional gamma correction
pixels = _GAMMA_TABLE[pixels]
# Encode 24-bit LED values in 32 bit integers
r = np.left_shift(pixels[0][:].astype(int), 8)
g = np.left_shift(pixels[1][:].astype(int), 16)
b = pixels[2][:].astype(int)
rgb = np.bitwise_or(np.bitwise_or(r, g), b)
# Update the pixels
for i in range(n_pixels):
self.strip.setPixelColor(i, neopixel.Color(rgb[i]))
self.strip.show()
示例5: _update_pi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def _update_pi():
"""Writes new LED values to the Raspberry Pi's LED strip
Raspberry Pi uses the rpi_ws281x to control the LED strip directly.
This function updates the LED strip with new values.
"""
global pixels, _prev_pixels
# Truncate values and cast to integer
pixels = np.clip(pixels, 0, 255).astype(int)
# Optional gamma correction
p = _gamma[pixels] if config.settings["configuration"]["SOFTWARE_GAMMA_CORRECTION"] else np.copy(pixels)
# Encode 24-bit LED values in 32 bit integers
r = np.left_shift(p[0][:].astype(int), 8)
g = np.left_shift(p[1][:].astype(int), 16)
b = p[2][:].astype(int)
rgb = np.bitwise_or(np.bitwise_or(r, g), b)
# Update the pixels
for i in range(config.settings["configuration"]["N_PIXELS"]):
# Ignore pixels if they haven't changed (saves bandwidth)
if np.array_equal(p[:, i], _prev_pixels[:, i]):
continue
strip._led_data[i] = rgb[i]
_prev_pixels = np.copy(p)
strip.show()
示例6: LCD_ShowImage
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def LCD_ShowImage(self,Image,Xstart,Ystart):
if (Image == None):
return
imwidth, imheight = Image.size
if imwidth != self.width or imheight != self.height:
raise ValueError('Image must be same dimensions as display \
({0}x{1}).' .format(self.width, self.height))
img = np.asarray(Image)
pix = np.zeros((self.width,self.height,2), dtype = np.uint8)
pix[...,[0]] = np.add(np.bitwise_and(img[...,[0]],0xF8),np.right_shift(img[...,[1]],5))
pix[...,[1]] = np.add(np.bitwise_and(np.left_shift(img[...,[1]],3),0xE0),np.right_shift(img[...,[2]],3))
pix = pix.flatten().tolist()
self.LCD_SetWindows(0, 0, self.width , self.height)
GPIO.output(LCD_Config.LCD_DC_PIN, GPIO.HIGH)
for i in range(0,len(pix),4096):
LCD_Config.SPI_Write_Byte(pix[i:i+4096])
示例7: _update_pi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def _update_pi():
"""Writes new LED values to the Raspberry Pi's LED strip
Raspberry Pi uses the rpi_ws281x to control the LED strip directly.
This function updates the LED strip with new values.
"""
global pixels, _prev_pixels
# Truncate values and cast to integer
pixels = np.clip(pixels, 0, 255).astype(int)
# Optional gamma correction
p = _gamma[pixels] if config.SOFTWARE_GAMMA_CORRECTION else np.copy(pixels)
# Encode 24-bit LED values in 32 bit integers
r = np.left_shift(p[0][:].astype(int), 8)
g = np.left_shift(p[1][:].astype(int), 16)
b = p[2][:].astype(int)
rgb = np.bitwise_or(np.bitwise_or(r, g), b)
# Update the pixels
for i in range(config.N_PIXELS):
# Ignore pixels if they haven't changed (saves bandwidth)
if np.array_equal(p[:, i], _prev_pixels[:, i]):
continue
#strip._led_data[i] = rgb[i]
strip._led_data[i] = int(rgb[i])
_prev_pixels = np.copy(p)
strip.show()
示例8: test_binary_int_broadcast_1
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def test_binary_int_broadcast_1():
for op, ref in [(relay.right_shift, np.right_shift),
(relay.left_shift, np.left_shift)]:
x = relay.var("x", relay.TensorType((10, 4), "int32"))
y = relay.var("y", relay.TensorType((5, 10, 1), "int32"))
z = op(x, y)
zz = run_infer_type(z)
assert zz.checked_type == relay.TensorType((5, 10, 4), "int32")
if ref is not None:
x_shape = (10, 4)
y_shape = (5, 10, 1)
t1 = relay.TensorType(x_shape, 'int32')
t2 = relay.TensorType(y_shape, 'int32')
x_data = np.random.randint(1, 10000, size=(x_shape)).astype(t1.dtype)
y_data = np.random.randint(1, 31, size=(y_shape)).astype(t2.dtype)
func = relay.Function([x, y], z)
ref_res = ref(x_data, y_data)
for target, ctx in ctx_list():
intrp = relay.create_executor("graph", ctx=ctx, target=target)
op_res = intrp.evaluate(func)(x_data, y_data)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res)
示例9: decode_4bit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def decode_4bit(words):
"""Decode 4-bit data.
For a given int8 byte containing bits 76543210,
the first sample is in 3210, the second in 7654, and both are interpreted
as signed 4-bit integers.
"""
# left_shift(byte[:,np.newaxis], shift40): [3210xxxx, 76543210]
split = np.left_shift(words[:, np.newaxis], shift40).ravel()
# right_shift(..., 4): [33333210, 77777654]
# so least significant bits go first.
split >>= 4
return split.astype(np.float32)
示例10: rawsco_to_exprsco
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def rawsco_to_exprsco(rawsco, midi_valid_range=(21, 108)):
clock, rate, nsamps, rawsco = rawsco
assert rate == 44100
assert rawsco.shape[0] == nsamps
nsamps = rawsco.shape[0]
t = rawsco[:, :3, :2].astype(np.uint16)
t = np.left_shift(t[:, :, 0], 8) + t[:, :, 1]
t = t.astype(np.float32)
t_p, t_tr = t[:, :2], t[:, 2:]
f_p = clock / (16 * (t_p + 1))
f_tr = clock / (32 * (t_tr + 1))
f = np.concatenate([f_p, f_tr], axis=1)
m = 69 + (12 * np.log(f / 440)) / np.log(2)
m = np.round(m)
# Clip notes to midi range
m[np.where(m < midi_valid_range[0])] = 0
m[np.where(m > midi_valid_range[1])] = 0
m = m.astype(np.uint8)
# Create output score
exprsco = np.zeros((nsamps, 4, 3), dtype=np.uint8)
# Set notes
exprsco[:, :3, 0] = m
exprsco[:, 3, 0] = rawsco[:, 3, 1]
# Set velocity
exprsco[:, :, 1] = np.where(exprsco[:, :, 0] > 0, rawsco[:, :, 2], 0)
# Set extra
exprsco[:, :, 2] = rawsco[:, :, 3]
return (rate, nsamps, exprsco)
示例11: image_to_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def image_to_data(self, image, rotation=0):
"""Generator function to convert a PIL image to 16-bit 565 RGB bytes."""
# NumPy is much faster at doing this. NumPy code provided by:
# Keith (https://www.blogger.com/profile/02555547344016007163)
pb = np.rot90(np.array(image.convert('RGB')), rotation // 90).astype('uint8')
result = np.zeros((self._width, self._height, 2), dtype=np.uint8)
result[..., [0]] = np.add(np.bitwise_and(pb[..., [0]], 0xF8), np.right_shift(pb[..., [1]], 5))
result[..., [1]] = np.add(np.bitwise_and(np.left_shift(pb[..., [1]], 3), 0xE0), np.right_shift(pb[..., [2]], 3))
return result.flatten().tolist()
示例12: __getitem__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def __getitem__(self, index):
#self.paths['images'][index]
# print self.opt.scale,self.opt.flip,self.opt.crop,self.opt.colorjitter
img = np.asarray(Image.open(self.paths_dict['images'][index]))#.astype(np.uint8)
HHA = np.asarray(Image.open(self.paths_dict['HHAs'][index]))[:,:,::-1]
seg = np.asarray(Image.open(self.paths_dict['segs'][index])).astype(np.uint8)-1
depth = np.asarray(Image.open(self.paths_dict['depths'][index])).astype(np.uint16)
assert (img.shape[0]==HHA.shape[0]==seg.shape[0]==depth.shape[0])
assert (img.shape[1]==HHA.shape[1]==seg.shape[1]==depth.shape[1])
depth = np.bitwise_or(np.right_shift(depth,3),np.left_shift(depth,16-3))
depth = depth.astype(np.float32)/120. # 1/5 * depth
params = get_params_sunrgbd(self.opt, seg.shape, maxcrop=.7)
depth_tensor_tranformed = transform(depth, params, normalize=False,istrain=self.opt.isTrain)
seg_tensor_tranformed = transform(seg, params, normalize=False,method='nearest',istrain=self.opt.isTrain)
if self.opt.inputmode == 'bgr-mean':
img_tensor_tranformed = transform(img, params, normalize=False, istrain=self.opt.isTrain, option=1)
HHA_tensor_tranformed = transform(HHA, params, normalize=False, istrain=self.opt.isTrain, option=2)
else:
img_tensor_tranformed = transform(img, params, istrain=self.opt.isTrain, option=1)
HHA_tensor_tranformed = transform(HHA, params, istrain=self.opt.isTrain, option=2)
# print img_tensor_tranformed
# print(np.unique(depth_tensor_tranformed.numpy()).shape)
# print img_tensor_tranformed.size()
return {'image':img_tensor_tranformed,
'depth':depth_tensor_tranformed,
'seg': seg_tensor_tranformed,
'HHA': HHA_tensor_tranformed,
'imgpath': self.paths_dict['segs'][index]}
示例13: load_spc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def load_spc(fname):
"""Load data from Becker&Hickl SPC files.
Returns:
3 numpy arrays: timestamps, detector, nanotime
"""
spc_dtype = np.dtype([('field0', '<u2'), ('b', '<u1'), ('c', '<u1'),
('a', '<u2')])
data = np.fromfile(fname, dtype=spc_dtype)
nanotime = 4095 - np.bitwise_and(data['field0'], 0x0FFF)
detector = data['c']
# Build the macrotime (timestamps) using in-place operation for efficiency
timestamps = data['b'].astype('int64')
np.left_shift(timestamps, 16, out=timestamps)
timestamps += data['a']
# extract the 13-th bit from data['field0']
overflow = np.bitwise_and(np.right_shift(data['field0'], 13), 1)
overflow = np.cumsum(overflow, dtype='int64')
# Add the overflow bits
timestamps += np.left_shift(overflow, 24)
return timestamps, detector, nanotime
示例14: test_shift
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def test_shift():
# explicit specify the output type
verify_broadcast_binary_ele(
(2, 1, 2), None, topi.right_shift, np.right_shift,
dtype="int32", rhs_min=0, rhs_max=32)
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.left_shift, np.left_shift,
dtype="int32", rhs_min=0, rhs_max=32)
verify_broadcast_binary_ele(
(1, 2, 2), (2,), topi.left_shift, np.left_shift,
dtype="int8", rhs_min=0, rhs_max=32)
示例15: posterize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import left_shift [as 別名]
def posterize(img, bits):
"""Posterize an image (reduce the number of bits for each color channel)
Args:
img (ndarray): Image to be posterized.
bits (int): Number of bits (1 to 8) to use for posterizing.
Returns:
ndarray: The posterized image.
"""
shift = 8 - bits
img = np.left_shift(np.right_shift(img, shift), shift)
return img