當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.isposinf方法代碼示例

本文整理匯總了Python中numpy.isposinf方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.isposinf方法的具體用法?Python numpy.isposinf怎麽用?Python numpy.isposinf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.isposinf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_scalar

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_scalar(self):
        x = np.inf
        actual = np.isposinf(x)
        expected = np.True_
        assert_equal(actual, expected)
        assert_equal(type(actual), type(expected))

        x = -3.4
        actual = np.fix(x)
        expected = np.float64(-3.0)
        assert_equal(actual, expected)
        assert_equal(type(actual), type(expected))

        out = np.array(0.0)
        actual = np.fix(x, out=out)
        assert_(actual is out) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_ufunclike.py

示例2: probabilities

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def probabilities(self) -> np.ndarray:
        """Creates the probability matrix from the weights
        """
        axis = 1
        maxv = np.max(self.weights, axis=1, keepdims=True)
        hasposinf = np.isposinf(maxv)
        maxv[np.isinf(maxv)] = 0  # avoid indeterminations
        exp: np.ndarray = np.exp(self.weights - maxv)
        # deal with infinite positives special case
        # by ignoring (0 proba) non-infinte on same row
        if np.any(hasposinf):
            is_inf = np.isposinf(self.weights)
            is_ignored = np.logical_and(np.logical_not(is_inf), hasposinf)
            exp[is_inf] = 1
            exp[is_ignored] = 0
        # random choice if sums to 0
        sums0 = np.sum(exp, axis=axis) == 0
        exp[sums0, :] = 1
        exp /= np.sum(exp, axis=axis, keepdims=True)  # normalize
        return exp 
開發者ID:facebookresearch,項目名稱:nevergrad,代碼行數:22,代碼來源:discretization.py

示例3: test_is_inf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_is_inf(self):
    if legacy_opset_pre_ver(10):
      raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format(
          defs.onnx_opset_version()))
    input = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf],
                     dtype=np.float32)
    expected_output = {
        "node_def": np.isinf(input),
        "node_def_neg_false": np.isposinf(input),
        "node_def_pos_false": np.isneginf(input)
    }
    node_defs = {
        "node_def":
            helper.make_node("IsInf", ["X"], ["Y"]),
        "node_def_neg_false":
            helper.make_node("IsInf", ["X"], ["Y"], detect_negative=0),
        "node_def_pos_false":
            helper.make_node("IsInf", ["X"], ["Y"], detect_positive=0)
    }
    for key in node_defs:
      output = run_node(node_defs[key], [input])
      np.testing.assert_equal(output["Y"], expected_output[key]) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:24,代碼來源:test_node.py

示例4: test_kl_div

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_kl_div():
    def xfunc(x, y):
        if x < 0 or y < 0 or (y == 0 and x != 0):
            # extension of natural domain to preserve convexity
            return np.inf
        elif np.isposinf(x) or np.isposinf(y):
            # limits within the natural domain
            return np.inf
        elif x == 0:
            return y
        else:
            return special.xlogy(x, x/y) - x + y
    values = (0, 0.5, 1.0)
    signs = [-1, 1]
    arr = []
    for sgna, va, sgnb, vb in itertools.product(signs, values, signs, values):
        arr.append((sgna*va, sgnb*vb))
    z = np.array(arr, dtype=float)
    w = np.vectorize(xfunc, otypes=[np.float64])(z[:,0], z[:,1])
    assert_func_equal(special.kl_div, w, z, rtol=1e-13, atol=1e-13) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:22,代碼來源:test_basic.py

示例5: isposinf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def isposinf(x, out=None):
    """
    Test element-wise for positive infinity, return result as sparse ``bool`` array.

    Parameters
    ----------
    x
        Input
    out, optional
        Output array

    Examples
    --------
    >>> import sparse
    >>> x = sparse.as_coo(np.array([np.inf]))
    >>> sparse.isposinf(x).todense()
    array([ True])

    See Also
    --------
    numpy.isposinf : The NumPy equivalent
    """
    from .core import elemwise

    return elemwise(lambda x, out=None, dtype=None: np.isposinf(x, out=out), x, out=out) 
開發者ID:pydata,項目名稱:sparse,代碼行數:27,代碼來源:common.py

示例6: fill_inf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def fill_inf(arr, pos_value=0, neg_value=0, copy=True):
    """Replaces positive and negative infinity entries in an array with the
    provided values.

    Parameters
    ----------
    arr : np.array

    pos_value : float
        Fill value for np.inf

    neg_value : float
        Fill value for -np.inf

    copy : bool, optional
        If True, creates a copy of x, otherwise replaces values in-place.
        By default, True.

    """
    if copy:
        arr = arr.copy()
    arr[np.isposinf(arr)] = pos_value
    arr[np.isneginf(arr)] = neg_value
    return arr 
開發者ID:mirnylab,項目名稱:cooltools,代碼行數:26,代碼來源:numutils.py

示例7: jsonify_floats

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def jsonify_floats(json_object):
    """
    Traverses through the JSON object and converts non JSON-spec compliant
    floats(nan, -inf, inf) to their string representations.

    Parameters
    ----------
    json_object
        JSON object
    """
    if isinstance(json_object, dict):
        return {k: jsonify_floats(v) for k, v in json_object.items()}
    elif isinstance(json_object, list):
        return [jsonify_floats(item) for item in json_object]
    elif isinstance(json_object, float):
        if np.isnan(json_object):
            return "NaN"
        elif np.isposinf(json_object):
            return "Infinity"
        elif np.isneginf(json_object):
            return "-Infinity"
        return json_object
    return json_object 
開發者ID:awslabs,項目名稱:gluon-ts,代碼行數:25,代碼來源:util.py

示例8: output

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def output(self, value, mask):
        if mask:
            return self._null_output
        if np.isfinite(value):
            if not np.isscalar(value):
                value = value.dtype.type(value)
            result = self._output_format.format(value)
            if result.startswith('array'):
                raise RuntimeError()
            if (self._output_format[2] == 'r' and
                result.endswith('.0')):
                result = result[:-2]
            return result
        elif np.isnan(value):
            return 'NaN'
        elif np.isposinf(value):
            return '+InF'
        elif np.isneginf(value):
            return '-InF'
        # Should never raise
        vo_raise(f"Invalid floating point value '{value}'") 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:23,代碼來源:converters.py

示例9: test_init_owa_inf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_init_owa_inf(self):
        r"""Test of initialization and __init__ -- OWA.

        Method: An affordance to allow you to set OWA = +Infinity from a JSON
        specs-file is offered by OpticalSystem: if OWA is supplied as 0, it is
        set to +Infinity.  We instantiate OpticalSystem objects and verify that
        this is done.
        """
        for specs in [specs_default, specs_simple, specs_multi]:
            # the input dict is modified in-place -- so copy it
            our_specs = deepcopy(specs)
            our_specs['OWA'] = 0
            for syst in our_specs['starlightSuppressionSystems']:
                syst['OWA'] = 0
            optsys = self.fixture(**deepcopy(our_specs))
            self.assertTrue(np.isposinf(optsys.OWA.value))
            for syst in optsys.starlightSuppressionSystems:
                self.assertTrue(np.isposinf(syst['OWA'].value))
        # repeat, but allow the special value to propagate up
        for specs in [specs_default, specs_simple, specs_multi]:
            # the input dict is modified in-place -- so copy it
            our_specs = deepcopy(specs)
            for syst in our_specs['starlightSuppressionSystems']:
                syst['OWA'] = 0
            optsys = self.fixture(**deepcopy(our_specs))
            self.assertTrue(np.isposinf(optsys.OWA.value)) 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:28,代碼來源:test_OpticalSystem.py

示例10: test_isposinf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_isposinf(self):
        a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0])
        out = nx.zeros(a.shape, bool)
        tgt = nx.array([True, False, False, False, False, False])

        res = ufl.isposinf(a)
        assert_equal(res, tgt)
        res = ufl.isposinf(a, out)
        assert_equal(res, tgt)
        assert_equal(out, tgt)

        a = a.astype(np.complex)
        with assert_raises(TypeError):
            ufl.isposinf(a) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:16,代碼來源:test_ufunclike.py

示例11: test_deprecated

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_deprecated(self):
        # NumPy 1.13.0, 2017-04-26
        assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2))
        assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2))
        assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:7,代碼來源:test_ufunclike.py

示例12: set_logp_to_neg_inf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def set_logp_to_neg_inf(X, logp, bounds):
    """Set `logp` to negative infinity when `X` is outside the allowed bounds.

    # Arguments
        X: tensorflow.Tensor
            The variable to apply the bounds to
        logp: tensorflow.Tensor
            The log probability corrosponding to `X`
        bounds: list of `Region` objects
            The regions corrosponding to allowed regions of `X`

    # Returns
        logp: tensorflow.Tensor
            The newly bounded log probability
    """
    conditions = []
    for l, u in bounds:
        lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
        upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)

        if not lower_is_neg_inf and upper_is_pos_inf:
            conditions.append(tf.greater(X, l))
        elif lower_is_neg_inf and not upper_is_pos_inf:
            conditions.append(tf.less(X, u))
        elif not (lower_is_neg_inf or upper_is_pos_inf):
            conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))

    if len(conditions) > 0:
        is_inside_bounds = conditions[0]
        for condition in conditions[1:]:
            is_inside_bounds = tf.logical_or(is_inside_bounds, condition)

        logp = tf.select(
            is_inside_bounds,
            logp,
            tf.fill(tf.shape(X), config.dtype(-np.inf))
        )

    return logp 
開發者ID:tensorprob,項目名稱:tensorprob,代碼行數:41,代碼來源:utilities.py

示例13: test_isposinf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_isposinf(self):
        a = nx.array([nx.inf, -nx.inf, nx.nan, 0.0, 3.0, -3.0])
        out = nx.zeros(a.shape, bool)
        tgt = nx.array([True, False, False, False, False, False])

        res = ufl.isposinf(a)
        assert_equal(res, tgt)
        res = ufl.isposinf(a, out)
        assert_equal(res, tgt)
        assert_equal(out, tgt) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:12,代碼來源:test_ufunclike.py

示例14: assert_almost_equal_inf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def assert_almost_equal_inf(x, y, decimal=6, msg=None):
    x = np.atleast_1d(x)
    y = np.atleast_1d(y)
    assert_equal(np.isposinf(x), np.isposinf(y))
    assert_equal(np.isneginf(x), np.isneginf(y))
    assert_equal(np.isnan(x), np.isnan(y))
    assert_almost_equal(x[np.isfinite(x)], y[np.isfinite(y)]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:9,代碼來源:test_tost.py

示例15: test_infimputer_fill_values

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isposinf [as 別名]
def test_infimputer_fill_values():
    """
    InfImputer when fill values are provided
    """
    base_x = np.random.random((100, 10)).astype(np.float32)

    flat_view = base_x.ravel()

    pos_inf_idxs = [1, 2, 3, 4, 5]
    neg_inf_idxs = [6, 7, 8, 9, 10]

    flat_view[pos_inf_idxs] = np.inf
    flat_view[neg_inf_idxs] = -np.inf

    # Our base x should now be littered with pos/neg inf values
    assert np.isposinf(base_x).sum() > 0, "Expected some positive infinity values here"
    assert np.isneginf(base_x).sum() > 0, "Expected some negative infinity values here"

    imputer = InfImputer(inf_fill_value=9999.0, neg_inf_fill_value=-9999.0)
    X = imputer.fit_transform(base_x)
    np.equal(
        X.ravel()[[pos_inf_idxs]], np.array([9999.0, 9999.0, 9999.0, 9999.0, 9999.0])
    )
    np.equal(
        X.ravel()[[neg_inf_idxs]],
        np.array([-9999.0, -9999.0, -9999.0, -9999.0, -9999.0]),
    ) 
開發者ID:equinor,項目名稱:gordo,代碼行數:29,代碼來源:test_transformers.py


注:本文中的numpy.isposinf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。