本文整理匯總了Python中numpy.isneginf方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.isneginf方法的具體用法?Python numpy.isneginf怎麽用?Python numpy.isneginf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.isneginf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: scale_neg_1_to_1_with_zero_mean_log_abs_max
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def scale_neg_1_to_1_with_zero_mean_log_abs_max(v):
'''
!!! not working
'''
df = pd.DataFrame({'v':v,
'sign': (v > 0) * 2 - 1})
df['lg'] = np.log(np.abs(v)) / np.log(1.96)
df['exclude'] = (np.isinf(df.lg) | np.isneginf(df.lg))
for mask in [(df['sign'] == -1) & (df['exclude'] == False),
(df['sign'] == 1) & (df['exclude'] == False)]:
df[mask]['lg'] = df[mask]['lg'].max() - df[mask]['lg']
df['lg'] *= df['sign']
df['lg'] = df['lg'].fillna(0)
print(df[df['exclude']]['lg'].values)
#to_rescale = convention_df['lg'].reindex(v.index)
df['to_out'] = scale_neg_1_to_1_with_zero_mean_abs_max(df['lg'])
print('right')
print(df.sort_values(by='lg').iloc[:5])
print(df.sort_values(by='lg').iloc[-5:])
print('to_out')
print(df.sort_values(by='to_out').iloc[:5])
print(df.sort_values(by='to_out').iloc[-5:])
print(len(df), len(df.dropna()))
return df['to_out']
示例2: test_is_inf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def test_is_inf(self):
if legacy_opset_pre_ver(10):
raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format(
defs.onnx_opset_version()))
input = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf],
dtype=np.float32)
expected_output = {
"node_def": np.isinf(input),
"node_def_neg_false": np.isposinf(input),
"node_def_pos_false": np.isneginf(input)
}
node_defs = {
"node_def":
helper.make_node("IsInf", ["X"], ["Y"]),
"node_def_neg_false":
helper.make_node("IsInf", ["X"], ["Y"], detect_negative=0),
"node_def_pos_false":
helper.make_node("IsInf", ["X"], ["Y"], detect_positive=0)
}
for key in node_defs:
output = run_node(node_defs[key], [input])
np.testing.assert_equal(output["Y"], expected_output[key])
示例3: isneginf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def isneginf(x, out=None):
"""
Test element-wise for negative infinity, return result as sparse ``bool`` array.
Parameters
----------
x
Input
out, optional
Output array
Examples
--------
>>> import sparse
>>> x = sparse.as_coo(np.array([-np.inf]))
>>> sparse.isneginf(x).todense()
array([ True])
See Also
--------
numpy.isneginf : The NumPy equivalent
"""
from .core import elemwise
return elemwise(lambda x, out=None, dtype=None: np.isneginf(x, out=out), x, out=out)
示例4: load_covarep
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def load_covarep(truth_dict):
for video_index in truth_dict:
file_name = covarep_path + video_index + '.mat'
fts = sio.loadmat(file_name)['features']
#print fts.shape
for seg_index in truth_dict[video_index]:
for w in truth_dict[video_index][seg_index]['data']:
start_frame = int(w['start_time_clip']*100)
end_frame = int(w['end_time_clip']*100)
ft = fts[start_frame:end_frame]
if ft.shape[0] == 0:
avg_ft = np.zeros(ft.shape[1])
else:
#print np.array(ft).shape
#print ft[0]
avg_ft = np.mean(ft,0)
avg_ft[np.isnan(avg_ft)] = 0
avg_ft[np.isneginf(avg_ft)] = 0
w['covarep'] = avg_ft
示例5: fill_inf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def fill_inf(arr, pos_value=0, neg_value=0, copy=True):
"""Replaces positive and negative infinity entries in an array with the
provided values.
Parameters
----------
arr : np.array
pos_value : float
Fill value for np.inf
neg_value : float
Fill value for -np.inf
copy : bool, optional
If True, creates a copy of x, otherwise replaces values in-place.
By default, True.
"""
if copy:
arr = arr.copy()
arr[np.isposinf(arr)] = pos_value
arr[np.isneginf(arr)] = neg_value
return arr
示例6: PPMI_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def PPMI_matrix(M):
M = scale_sim_mat(M)
nm_nodes = len(M)
col_s = np.sum(M, axis=0).reshape(1,nm_nodes)
row_s = np.sum(M, axis=1).reshape(nm_nodes,1)
D = np.sum(col_s)
rowcol_s = np.dot(row_s,col_s)
PPMI = np.log(np.divide(D*M,rowcol_s))
PPMI[np.isnan(PPMI)] = 0.0
PPMI[np.isinf(PPMI)] = 0.0
PPMI[np.isneginf(PPMI)] = 0.0
PPMI[PPMI<0] = 0.0
return PPMI
示例7: jsonify_floats
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def jsonify_floats(json_object):
"""
Traverses through the JSON object and converts non JSON-spec compliant
floats(nan, -inf, inf) to their string representations.
Parameters
----------
json_object
JSON object
"""
if isinstance(json_object, dict):
return {k: jsonify_floats(v) for k, v in json_object.items()}
elif isinstance(json_object, list):
return [jsonify_floats(item) for item in json_object]
elif isinstance(json_object, float):
if np.isnan(json_object):
return "NaN"
elif np.isposinf(json_object):
return "Infinity"
elif np.isneginf(json_object):
return "-Infinity"
return json_object
return json_object
示例8: output
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def output(self, value, mask):
if mask:
return self._null_output
if np.isfinite(value):
if not np.isscalar(value):
value = value.dtype.type(value)
result = self._output_format.format(value)
if result.startswith('array'):
raise RuntimeError()
if (self._output_format[2] == 'r' and
result.endswith('.0')):
result = result[:-2]
return result
elif np.isnan(value):
return 'NaN'
elif np.isposinf(value):
return '+InF'
elif np.isneginf(value):
return '-InF'
# Should never raise
vo_raise(f"Invalid floating point value '{value}'")
示例9: set_logp_to_neg_inf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def set_logp_to_neg_inf(X, logp, bounds):
"""Set `logp` to negative infinity when `X` is outside the allowed bounds.
# Arguments
X: tensorflow.Tensor
The variable to apply the bounds to
logp: tensorflow.Tensor
The log probability corrosponding to `X`
bounds: list of `Region` objects
The regions corrosponding to allowed regions of `X`
# Returns
logp: tensorflow.Tensor
The newly bounded log probability
"""
conditions = []
for l, u in bounds:
lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)
if not lower_is_neg_inf and upper_is_pos_inf:
conditions.append(tf.greater(X, l))
elif lower_is_neg_inf and not upper_is_pos_inf:
conditions.append(tf.less(X, u))
elif not (lower_is_neg_inf or upper_is_pos_inf):
conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))
if len(conditions) > 0:
is_inside_bounds = conditions[0]
for condition in conditions[1:]:
is_inside_bounds = tf.logical_or(is_inside_bounds, condition)
logp = tf.select(
is_inside_bounds,
logp,
tf.fill(tf.shape(X), config.dtype(-np.inf))
)
return logp
示例10: test_coint_identical_series
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def test_coint_identical_series():
nobs = 200
scale_e = 1
np.random.seed(123)
y = scale_e * np.random.randn(nobs)
warnings.simplefilter('always', ColinearityWarning)
with warnings.catch_warnings(record=True) as w:
c = coint(y, y, trend="c", maxlag=0, autolag=None)
assert_equal(len(w), 1)
assert_equal(c[1], 0.0)
assert_(np.isneginf(c[0]))
示例11: test_coint_perfect_collinearity
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def test_coint_perfect_collinearity():
# test uses nearly perfect collinearity
nobs = 200
scale_e = 1
np.random.seed(123)
x = scale_e * np.random.randn(nobs, 2)
y = 1 + x.sum(axis=1) + 1e-7 * np.random.randn(nobs)
warnings.simplefilter('always', ColinearityWarning)
with warnings.catch_warnings(record=True) as w:
c = coint(y, x, trend="c", maxlag=0, autolag=None)
assert_equal(c[1], 0.0)
assert_(np.isneginf(c[0]))
示例12: assert_almost_equal_inf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def assert_almost_equal_inf(x, y, decimal=6, msg=None):
x = np.atleast_1d(x)
y = np.atleast_1d(y)
assert_equal(np.isposinf(x), np.isposinf(y))
assert_equal(np.isneginf(x), np.isneginf(y))
assert_equal(np.isnan(x), np.isnan(y))
assert_almost_equal(x[np.isfinite(x)], y[np.isfinite(y)])
示例13: test_infimputer_fill_values
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def test_infimputer_fill_values():
"""
InfImputer when fill values are provided
"""
base_x = np.random.random((100, 10)).astype(np.float32)
flat_view = base_x.ravel()
pos_inf_idxs = [1, 2, 3, 4, 5]
neg_inf_idxs = [6, 7, 8, 9, 10]
flat_view[pos_inf_idxs] = np.inf
flat_view[neg_inf_idxs] = -np.inf
# Our base x should now be littered with pos/neg inf values
assert np.isposinf(base_x).sum() > 0, "Expected some positive infinity values here"
assert np.isneginf(base_x).sum() > 0, "Expected some negative infinity values here"
imputer = InfImputer(inf_fill_value=9999.0, neg_inf_fill_value=-9999.0)
X = imputer.fit_transform(base_x)
np.equal(
X.ravel()[[pos_inf_idxs]], np.array([9999.0, 9999.0, 9999.0, 9999.0, 9999.0])
)
np.equal(
X.ravel()[[neg_inf_idxs]],
np.array([-9999.0, -9999.0, -9999.0, -9999.0, -9999.0]),
)
示例14: transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def transform(self, X: Union[pd.DataFrame, np.ndarray], y=None):
# Ensure we're dealing with numpy array if it's a dataframe or similar
X = X.values if hasattr(X, "values") else X
# Apply specific fill values if provided.
if self.inf_fill_value is not None:
X[np.isposinf(X)] = self.inf_fill_value
if self.neg_inf_fill_value is not None:
X[np.isneginf(X)] = self.neg_inf_fill_value
# May still be left over infs, if only one fill value was supplied for example
if self.strategy is not None:
return getattr(self, f"_fill_{self.strategy}")(X)
return X
示例15: _fill_extremes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import isneginf [as 別名]
def _fill_extremes(self, X: np.ndarray):
"""
Fill negative and postive infs with their dtype's min/max values
"""
X[np.isposinf(X)] = np.finfo(X.dtype).max
X[np.isneginf(X)] = np.finfo(X.dtype).min
return X