當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.iscomplexobj方法代碼示例

本文整理匯總了Python中numpy.iscomplexobj方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.iscomplexobj方法的具體用法?Python numpy.iscomplexobj怎麽用?Python numpy.iscomplexobj使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.iscomplexobj方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: construct_tdm

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def construct_tdm(self):
        td_xy = 2 * numpy.asarray(self.td_xy)
        tdm_oo = einsum('vxia,ipaq->vxpq', td_xy, self["oovo"])
        tdm_ov = einsum('vxia,ipaq->vxpq', td_xy, self["oovv"])
        tdm_vv = einsum('vxia,ipaq->vxpq', td_xy, self["ovvv"])

        if numpy.iscomplexobj(self["oovv"]):
            tdm_vo = einsum('vxia,ipaq->vxpq', td_xy, self["ovvo"])
        else:
            tdm_vo = tdm_ov.swapaxes(2, 3).conj()

        tdm = numpy.concatenate(
            (
                numpy.concatenate((tdm_oo, tdm_ov), axis=3),
                numpy.concatenate((tdm_vo, tdm_vv), axis=3)
            ),
            axis=2,
        )
        return tdm 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:gw_slow.py

示例2: RCCSD

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def RCCSD(mf, frozen=None, mo_coeff=None, mo_occ=None):
    import numpy
    from pyscf import lib
    from pyscf.soscf import newton_ah
    from pyscf.cc import dfccsd

    if isinstance(mf, scf.uhf.UHF):
        raise RuntimeError('RCCSD cannot be used with UHF method.')
    elif isinstance(mf, scf.rohf.ROHF):
        lib.logger.warn(mf, 'RCCSD method does not support ROHF method. ROHF object '
                        'is converted to UHF object and UCCSD method is called.')
        mf = scf.addons.convert_to_uhf(mf)
        return UCCSD(mf, frozen, mo_coeff, mo_occ)

    if isinstance(mf, newton_ah._CIAH_SOSCF) or not isinstance(mf, scf.hf.RHF):
        mf = scf.addons.convert_to_rhf(mf)

    if getattr(mf, 'with_df', None):
        return dfccsd.RCCSD(mf, frozen, mo_coeff, mo_occ)

    elif numpy.iscomplexobj(mo_coeff) or numpy.iscomplexobj(mf.mo_coeff):
        return rccsd.RCCSD(mf, frozen, mo_coeff, mo_occ)

    else:
        return ccsd.CCSD(mf, frozen, mo_coeff, mo_occ) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:27,代碼來源:__init__.py

示例3: mkk2ab

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def mkk2ab(mk, k):
    """
    Transforms MK and M TD matrices into A and B matrices.
    Args:
        mk (numpy.ndarray): TD MK-matrix;
        k (numpy.ndarray): TD K-matrix;

    Returns:
        A and B submatrices.
    """
    if numpy.iscomplexobj(mk) or numpy.iscomplexobj(k):
        raise ValueError("MK- and/or K-matrixes are complex-valued: no transform is possible")
    m = solve(k.T, mk.T).T
    a = 0.5 * (m + k)
    b = 0.5 * (m - k)
    return a, b 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:common_slow.py

示例4: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def __init__(self, mol, mf, mc, tol=None, freeze_orb=None):
        self.tol = -1 if tol is None else tol
        self.parameters = {}
        self._mol = mol
        self._nelec = (mc.nelecas[0] + mc.ncore, mc.nelecas[1] + mc.ncore)
        self._copy_ci(mc)

        if len(mc.mo_coeff.shape) == 3:
            self.parameters["mo_coeff_alpha"] = mc.mo_coeff[0][:, : mc.ncas + mc.ncore]
            self.parameters["mo_coeff_beta"] = mc.mo_coeff[1][:, : mc.ncas + mc.ncore]
        else:
            self.parameters["mo_coeff_alpha"] = mc.mo_coeff[:, : mc.ncas + mc.ncore]
            self.parameters["mo_coeff_beta"] = mc.mo_coeff[:, : mc.ncas + mc.ncore]
        self._coefflookup = ("mo_coeff_alpha", "mo_coeff_beta")
        self.pbc_str = "PBC" if hasattr(mol, "a") else ""
        self.iscomplex = bool(sum(map(np.iscomplexobj, self.parameters.values())))
        self.get_phase = (lambda x: x / np.abs(x)) if self.iscomplex else np.sign
        self.freeze_orb = [[], []] if freeze_orb is None else freeze_orb 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:20,代碼來源:multislater.py

示例5: _init_mol

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def _init_mol(self, mol, mf):
        from pyscf import scf

        for s, lookup in enumerate(self._coefflookup):
            if len(mf.mo_occ.shape) == 2:
                self.parameters[lookup] = mf.mo_coeff[s][
                    :, np.asarray(mf.mo_occ[s] > 0.9)
                ]
            else:
                minocc = (0.9, 1.1)[s]
                self.parameters[lookup] = mf.mo_coeff[:, np.asarray(mf.mo_occ > minocc)]
        self._nelec = tuple(mol.nelec)
        self._mol = mol
        self.iscomplex = bool(sum(map(np.iscomplexobj, self.parameters.values())))
        self.evaluate_orbitals = self._evaluate_orbitals_mol
        self.evaluate_mos = self._evaluate_mos_mol 
開發者ID:WagnerGroup,項目名稱:pyqmc,代碼行數:18,代碼來源:slater.py

示例6: safe_bulk_eval_compact_polys

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def safe_bulk_eval_compact_polys(vtape, ctape, paramvec, dest_shape):
    """Typechecking wrapper for :function:`bulk_eval_compact_polys`.

    The underlying method has two implementations: one for real-valued
    `ctape`, and one for complex-valued. This wrapper will dynamically
    dispatch to the appropriate implementation method based on the
    type of `ctape`. If the type of `ctape` is known prior to calling,
    it's slightly faster to call the appropriate implementation method
    directly; if not.
    """
    if _np.iscomplexobj(ctape):
        ret = bulk_eval_compact_polys_complex(vtape, ctape, paramvec, dest_shape)
        im_norm = _np.linalg.norm(_np.imag(ret))
        if im_norm > 1e-6:
            print("WARNING: norm(Im part) = {:g}".format(im_norm))
    else:
        ret = bulk_eval_compact_polys(vtape, ctape, paramvec, dest_shape)
    return _np.real(ret) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:20,代碼來源:__init__.py

示例7: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def __init__(self, vec, evotype="auto", typ="prep"):
        """
        Initialize a FullSPAMVec object.

        Parameters
        ----------
        vec : array_like or SPAMVec
            a 1D numpy array representing the SPAM operation.  The
            shape of this array sets the dimension of the SPAM op.

        evotype : {"densitymx", "statevec"}
            the evolution type being used.

        typ : {"prep", "effect"}
            whether this is a state preparation or an effect (measurement)
            SPAM vector.
        """
        vec = SPAMVec.convert_to_vector(vec)
        if evotype == "auto":
            evotype = "statevec" if _np.iscomplexobj(vec) else "densitymx"
        assert(evotype in ("statevec", "densitymx")), \
            "Invalid evolution type '%s' for %s" % (evotype, self.__class__.__name__)
        DenseSPAMVec.__init__(self, vec, evotype, typ) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:25,代碼來源:spamvec.py

示例8: test_poly

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def test_poly(self):
        assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
                                  [1, -3, -2, 6])

        # From matlab docs
        A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
        assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])

        # Should produce real output for perfect conjugates
        assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
        assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
                                      1-2j, 1.+3.5j, 1-3.5j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
        assert_(np.isrealobj(np.poly([1j, -1j])))
        assert_(np.isrealobj(np.poly([1, -1])))

        assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))

        np.random.seed(42)
        a = np.random.randn(100) + 1j*np.random.randn(100)
        assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_polynomial.py

示例9: _maybe_null_out

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def _maybe_null_out(result, axis, mask, min_count=1):
    if axis is not None and getattr(result, 'ndim', False):
        null_mask = (mask.shape[axis] - mask.sum(axis) - min_count) < 0
        if np.any(null_mask):
            if is_numeric_dtype(result):
                if np.iscomplexobj(result):
                    result = result.astype('c16')
                else:
                    result = result.astype('f8')
                result[null_mask] = np.nan
            else:
                # GH12941, use None to auto cast null
                result[null_mask] = None
    elif result is not tslibs.NaT:
        null_mask = mask.size - mask.sum()
        if null_mask < min_count:
            result = np.nan

    return result 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:nanops.py

示例10: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def __init__(self, diag, dims=None, dir=0, dtype='float64'):
        self.diag = diag.flatten()
        self.complex = True if np.iscomplexobj(self.diag) else False
        if dims is None:
            self.shape = (len(self.diag), len(self.diag))
            self.dims = None
            self.reshape = False
        else:
            diagdims = [1] * len(dims)
            diagdims[dir] = dims[dir]
            self.diag = self.diag.reshape(diagdims)
            self.shape = (np.prod(dims), np.prod(dims))
            self.dims = dims
            self.reshape = True
        self.dtype = np.dtype(dtype)
        self.explicit = False 
開發者ID:equinor,項目名稱:pylops,代碼行數:18,代碼來源:Diagonal.py

示例11: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def __init__(self, A, dims=None, dtype='float64'):
        self.A = A
        if isinstance(A, np.ndarray):
            self.complex = np.iscomplexobj(A)
        else:
            self.complex = np.iscomplexobj(A.data)
        if dims is None:
            self.reshape = False
            self.shape = A.shape
            self.explicit = True
        else:
            if isinstance(dims, int):
                dims = (dims, )
            self.reshape = True
            self.dims = np.array(dims, dtype=np.int)
            self.shape = (A.shape[0]*np.prod(self.dims),
                          A.shape[1]*np.prod(self.dims))
            self.explicit = False
        self.dtype = np.dtype(dtype) 
開發者ID:equinor,項目名稱:pylops,代碼行數:21,代碼來源:MatrixMult.py

示例12: _augmented_orthonormal_cols

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def _augmented_orthonormal_cols(x, k):
    # extract the shape of the x array
    n, m = x.shape
    # create the expanded array and copy x into it
    y = np.empty((n, m+k), dtype=x.dtype)
    y[:, :m] = x
    # do some modified gram schmidt to add k random orthonormal vectors
    for i in range(k):
        # sample a random initial vector
        v = np.random.randn(n)
        if np.iscomplexobj(x):
            v = v + 1j*np.random.randn(n)
        # subtract projections onto the existing unit length vectors
        for j in range(m+i):
            u = y[:, j]
            v -= (np.dot(v, u.conj()) / np.dot(u, u.conj())) * u
        # normalize v
        v /= np.sqrt(np.dot(v, v.conj()))
        # add v into the output array
        y[:, m+i] = v
    # return the expanded array
    return y 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:arpack.py

示例13: _correlate_or_convolve

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def _correlate_or_convolve(input, weights, output, mode, cval, origin,
                           convolution):
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    origins = _ni_support._normalize_sequence(origin, input.ndim)
    weights = numpy.asarray(weights, dtype=numpy.float64)
    wshape = [ii for ii in weights.shape if ii > 0]
    if len(wshape) != input.ndim:
        raise RuntimeError('filter weights array has incorrect shape.')
    if convolution:
        weights = weights[tuple([slice(None, None, -1)] * weights.ndim)]
        for ii in range(len(origins)):
            origins[ii] = -origins[ii]
            if not weights.shape[ii] & 1:
                origins[ii] -= 1
    for origin, lenw in zip(origins, wshape):
        if (lenw // 2 + origin < 0) or (lenw // 2 + origin > lenw):
            raise ValueError('invalid origin')
    if not weights.flags.contiguous:
        weights = weights.copy()
    output, return_value = _ni_support._get_output(output, input)
    mode = _ni_support._extend_mode_to_code(mode)
    _nd_image.correlate(input, weights, output, mode, cval, origins)
    return return_value 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:filters.py

示例14: _maybe_null_out

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def _maybe_null_out(result, axis, mask, min_count=1):
    if axis is not None and getattr(result, 'ndim', False):
        null_mask = (mask.shape[axis] - mask.sum(axis) - min_count) < 0
        if np.any(null_mask):
            if is_numeric_dtype(result):
                if np.iscomplexobj(result):
                    result = result.astype('c16')
                else:
                    result = result.astype('f8')
                result[null_mask] = np.nan
            else:
                # GH12941, use None to auto cast null
                result[null_mask] = None
    elif result is not tslib.NaT:
        null_mask = mask.size - mask.sum()
        if null_mask < min_count:
            result = np.nan

    return result 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:21,代碼來源:nanops.py

示例15: stft_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iscomplexobj [as 別名]
def stft_data(self, value):
        if value is None:
            self._stft_data = None
            return

        elif not isinstance(value, np.ndarray):
            raise AudioSignalException('Type of self.stft_data must be of type np.ndarray!')

        if value.ndim == 1:
            raise AudioSignalException('Cannot support arrays with less than 2 dimensions!')

        if value.ndim == 2:
            value = np.expand_dims(value, axis=constants.STFT_CHAN_INDEX)

        if value.ndim > 3:
            raise AudioSignalException('Cannot support arrays with more than 3 dimensions!')

        if not np.iscomplexobj(value):
            warnings.warn('Initializing STFT with data that is non-complex. '
                          'This might lead to weird results!')

        self._stft_data = value 
開發者ID:nussl,項目名稱:nussl,代碼行數:24,代碼來源:audio_signal.py


注:本文中的numpy.iscomplexobj方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。