當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.interp方法代碼示例

本文整理匯總了Python中numpy.interp方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.interp方法的具體用法?Python numpy.interp怎麽用?Python numpy.interp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.interp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def __init__(self,alpha_max,Tg,xi):
        gamma=0.9+(0.05-xi)/(0.3+6*xi)
        eta1=0.02+(0.05-xi)/(4+32*xi)
        eta1=eta1 if eta1>0 else 0
        eta2=1+(0.05-xi)/(0.08+1.6*xi)
        eta2=eta2 if eta2>0.55 else 0.55
        T=np.linspace(0,6,601)
        alpha=[]
        for t in T:
            if t<0.1:
                alpha.append(np.interp(t,[0,0.1],[0.45*alpha_max,eta2*alpha_max]))
            elif t<Tg:
                alpha.append(eta2*alpha_max)
            elif t<5*Tg:
                alpha.append((Tg/t)**gamma*eta2*alpha_max)
            else:
                alpha.append((eta2*0.2**gamma-eta1*(t-5*Tg))*alpha_max)
        self.__spectrum={'T':T,'alpha':alpha} 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:20,代碼來源:spectrum.py

示例2: spectrum_analysis

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def spectrum_analysis(model,n,spec):
    """
    sepctrum analysis
    
    params:
        n: number of modes to use\n
        spec: a list of tuples (period,acceleration response)
    """
    freq,mode=eigen_mode(model,n)
    M_=np.dot(mode.T,model.M)
    M_=np.dot(M_,mode)
    K_=np.dot(mode.T,model.K)
    K_=np.dot(K_,mode)
    C_=np.dot(mode.T,model.C)
    C_=np.dot(C_,mode)
    d_=[]
    for (m_,k_,c_) in zip(M_.diag(),K_.diag(),C_.diag()):
        sdof=SDOFSystem(m_,k_)
        T=sdof.omega_d()
        d_.append(np.interp(T,spec[0],spec[1]*m_))
    d=np.dot(d_,mode)
    #CQC
    return d 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:25,代碼來源:dynamic.py

示例3: nan_helper

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def nan_helper(y):
    """Helper to handle indices and logical indices of NaNs.

    Input:
        - y, 1d numpy array with possible NaNs
    Output:
        - nans, logical indices of NaNs
        - index, a function, with signature indices= index(logical_indices),
          to convert logical indices of NaNs to 'equivalent' indices
    Example:
        >>> # linear interpolation of NaNs
        >>> nans, x= nan_helper(y)
        >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
    """

    return np.isnan(y), lambda z: z.nonzero()[0] 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:18,代碼來源:helper.py

示例4: test_control_curve_interpolated_json

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def test_control_curve_interpolated_json(use_parameters):
    # this is a little hack-y, as the parameters don't provide access to their
    # data once they've been initalised
    if use_parameters:
        model = load_model("reservoir_with_cc_param_values.json")
    else:
        model = load_model("reservoir_with_cc.json")
    reservoir1 = model.nodes["reservoir1"]
    model.setup()
    path = os.path.join(os.path.dirname(__file__), "models", "control_curve.csv")
    control_curve = pd.read_csv(path)["Control Curve"].values
    values = [-8, -6, -4]

    @assert_rec(model, reservoir1.cost)
    def expected_cost(timestep, si):
        # calculate expected cost manually and compare to parameter output
        volume_factor = reservoir1._current_pc[si.global_id]
        cc = control_curve[timestep.index]
        return np.interp(volume_factor, [0.0, cc, 1.0], values[::-1])
    model.run() 
開發者ID:pywr,項目名稱:pywr,代碼行數:22,代碼來源:test_control_curves.py

示例5: test_circular_control_curve_interpolated_json

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def test_circular_control_curve_interpolated_json():
    # this is a little hack-y, as the parameters don't provide access to their
    # data once they've been initalised
    model = load_model("reservoir_with_circular_cc.json")
    reservoir1 = model.nodes["reservoir1"]
    model.setup()
    path = os.path.join(os.path.dirname(__file__), "models", "control_curve.csv")
    control_curve = pd.read_csv(path)["Control Curve"].values
    values = [-8, -6, -4]

    @assert_rec(model, reservoir1.cost)
    def expected_cost(timestep, si):
        # calculate expected cost manually and compare to parameter output
        volume_factor = reservoir1._current_pc[si.global_id]
        cc = control_curve[timestep.index]
        return np.interp(volume_factor, [0.0, cc, 1.0], values[::-1])
    model.run() 
開發者ID:pywr,項目名稱:pywr,代碼行數:19,代碼來源:test_control_curves.py

示例6: colormap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def colormap(x, m=None, M=None, center=0, colors=None):
    '''color a grayscale array (currently red/blue by sign)'''
    if center is None:
        center = 0
    if colors is None:
        colors = np.array(((0, 0.7, 1),
                           (0,   0, 0),
                           (1,   0, 0)),
                          dtype=float)
    if x.shape[-1] == 1:
        x = x[..., 0]
    x = scale_values(x, min=m, max=M, center=center)
    y = np.empty(x.shape + (3,))
    for c in xrange(3):
        y[..., c] = np.interp(x, (0, 0.5, 1), colors[:, c])
    return y 
開發者ID:hjimce,項目名稱:Depth-Map-Prediction,代碼行數:18,代碼來源:imgutil.py

示例7: cor_2_1d

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def cor_2_1d(cor, H, W):
    bon_ceil_x, bon_ceil_y = [], []
    bon_floor_x, bon_floor_y = [], []
    n_cor = len(cor)
    for i in range(n_cor // 2):
        xys = panostretch.pano_connect_points(cor[i*2],
                                              cor[(i*2+2) % n_cor],
                                              z=-50, w=W, h=H)
        bon_ceil_x.extend(xys[:, 0])
        bon_ceil_y.extend(xys[:, 1])
    for i in range(n_cor // 2):
        xys = panostretch.pano_connect_points(cor[i*2+1],
                                              cor[(i*2+3) % n_cor],
                                              z=50, w=W, h=H)
        bon_floor_x.extend(xys[:, 0])
        bon_floor_y.extend(xys[:, 1])
    bon_ceil_x, bon_ceil_y = sort_xy_filter_unique(bon_ceil_x, bon_ceil_y, y_small_first=True)
    bon_floor_x, bon_floor_y = sort_xy_filter_unique(bon_floor_x, bon_floor_y, y_small_first=False)
    bon = np.zeros((2, W))
    bon[0] = np.interp(np.arange(W), bon_ceil_x, bon_ceil_y, period=W)
    bon[1] = np.interp(np.arange(W), bon_floor_x, bon_floor_y, period=W)
    bon = ((bon + 0.5) / H - 0.5) * np.pi
    return bon 
開發者ID:sunset1995,項目名稱:HorizonNet,代碼行數:25,代碼來源:dataset.py

示例8: test_zero_dimensional_interpolation_point

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def test_zero_dimensional_interpolation_point(self):
        x = np.linspace(0, 1, 5)
        y = np.linspace(0, 1, 5)
        x0 = np.array(.3)
        assert_almost_equal(np.interp(x0, x, y), x0)

        xp = np.array([0, 2, 4])
        fp = np.array([1, -1, 1])

        actual = np.interp(np.array(1), xp, fp)
        assert_equal(actual, 0)
        assert_(isinstance(actual, np.float64))

        actual = np.interp(np.array(4.5), xp, fp, period=4)
        assert_equal(actual, 0.5)
        assert_(isinstance(actual, np.float64)) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_function_base.py

示例9: test_interpolate_index_values

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def test_interpolate_index_values(self):
        s = Series(np.nan, index=np.sort(np.random.rand(30)))
        s[::3] = np.random.randn(10)

        vals = s.index.values.astype(float)

        result = s.interpolate(method='index')

        expected = s.copy()
        bad = isna(expected.values)
        good = ~bad
        expected = Series(np.interp(vals[bad], vals[good],
                                    s.values[good]),
                          index=s.index[bad])

        assert_series_equal(result[bad], expected)

        # 'values' is synonymous with 'index' for the method kwarg
        other_result = s.interpolate(method='values')

        assert_series_equal(other_result, result)
        assert_series_equal(other_result[bad], expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_missing.py

示例10: sample_posterior

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def sample_posterior(self, x, n=1):
        r"""
        Generates :code:`n` samples from the estimated posterior
        distribution for the input vector :code:`x`. The sampling
        is performed by the inverse CDF method using the estimated
        CDF obtained from the :code:`cdf` member function.

        Arguments:

            x(np.array): Array of shape `(n, m)` containing `n` inputs for which
                         to predict the conditional quantiles.

            n(int): The number of samples to generate.

        Returns:

            Tuple (xs, fs) containing the :math: `x`-values in `xs` and corresponding
            values of the posterior CDF :math: `F(x)` in `fs`.
        """
        y_pred, qs = self.cdf(x)
        p = np.random.rand(n)
        y = np.interp(p, qs, y_pred)
        return y 
開發者ID:atmtools,項目名稱:typhon,代碼行數:25,代碼來源:qrnn.py

示例11: interp_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def interp_batch(total_batch_x):
    interp_batch_x = total_batch_x.copy()
    N_batch = total_batch_x.shape[0]
    for n in range(N_batch):
        temp_idx = np.where(total_batch_x[n,0,:,1]==1)[0]
        t1 = int(temp_idx[-1])
        temp_idx = np.where(total_batch_x[n,0,:,2]==1)[0]
        t2 = int(temp_idx[0])
        if t2-t1<=1:
            continue
        interp_t = np.array(range(t1+1,t2))
        for k in range(total_batch_x.shape[1]):
            #temp_std = np.std(total_batch_x[n,k,total_batch_x[n,k,:,0]!=0,0])
            
            temp_std1 = np.std(total_batch_x[n,k,total_batch_x[n,0,:,1]!=0,0])
            temp_std2 = np.std(total_batch_x[n,k,total_batch_x[n,0,:,2]!=0,0])
            
            x_p = [t1,t2]
            f_p = [total_batch_x[n,k,t1,0],total_batch_x[n,k,t2,0]]
            #interp_batch_x[n,k,t1+1:t2,0] = np.interp(interp_t,x_p,f_p)#+np.random.normal(0, temp_std, t2-t1-1)
            interp_batch_x[n,k,t1+1:t2,0] = np.interp(interp_t,x_p,f_p)+np.random.normal(0, (temp_std1+temp_std2)*0.5, t2-t1-1)
    return interp_batch_x 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:24,代碼來源:track_lib.py

示例12: interp_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def interp_batch(total_batch_x):
    interp_batch_x = total_batch_x.copy()
    N_batch = total_batch_x.shape[0]
    for n in range(N_batch):
        temp_idx = np.where(total_batch_x[n,0,:,1]==1)[0]
        t1 = int(temp_idx[-1])
        temp_idx = np.where(total_batch_x[n,0,:,2]==1)[0]
        t2 = int(temp_idx[0])
        if t2-t1<=1:
            continue
        interp_t = np.array(range(t1+1,t2))
        for k in range(total_batch_x.shape[1]):
            #temp_std = np.std(total_batch_x[n,k,total_batch_x[n,k,:,0]!=0,0])
            temp_std1 = np.std(total_batch_x[n,k,total_batch_x[n,0,:,1]!=0,0])
            temp_std2 = np.std(total_batch_x[n,k,total_batch_x[n,0,:,2]!=0,0])
            x_p = [t1,t2]
            f_p = [total_batch_x[n,k,t1,0],total_batch_x[n,k,t2,0]]
            #*************************************
            #interp_batch_x[n,k,t1+1:t2,0] = np.interp(interp_t,x_p,f_p)+np.random.normal(0, temp_std, t2-t1-1)
            #*************************************
            interp_batch_x[n,k,t1+1:t2,0] = np.interp(interp_t,x_p,f_p)+np.random.normal(0, (temp_std1+temp_std2)*0.5, t2-t1-1)
    return interp_batch_x 
開發者ID:GaoangW,項目名稱:TNT,代碼行數:24,代碼來源:train_cnn_trajectory_2d.py

示例13: test_complex_interp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def test_complex_interp(self):
        # test complex interpolation
        x = np.linspace(0, 1, 5)
        y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j
        x0 = 0.3
        y0 = x0 + (1+x0)*1.0j
        assert_almost_equal(np.interp(x0, x, y), y0)
        # test complex left and right
        x0 = -1
        left = 2 + 3.0j
        assert_almost_equal(np.interp(x0, x, y, left=left), left)
        x0 = 2.0
        right = 2 + 3.0j
        assert_almost_equal(np.interp(x0, x, y, right=right), right)
        # test complex periodic
        x = [-180, -170, -185, 185, -10, -5, 0, 365]
        xp = [190, -190, 350, -350]
        fp = [5+1.0j, 10+2j, 3+3j, 4+4j]
        y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j,
             3.5+3.5j, 3.75+3.75j]
        assert_almost_equal(np.interp(x, xp, fp, period=360), y) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:23,代碼來源:test_function_base.py

示例14: linear_interpolation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def linear_interpolation(x, xp, fp, **kwargs):
  """Multi-dimensional linear interpolation.

  Returns the multi-dimensional piecewise linear interpolant to a function with
  given discrete data points (xp, fp), evaluated at x.

  Note that *N and *M indicate zero or more dimensions.

  Args:
    x: An array of shape [*N], the x-coordinates of the interpolated values.
    xp: An np.array of shape [D], the x-coordinates of the data points, must be
      increasing.
    fp: An np.array of shape [D, *M], the y-coordinates of the data points.
    **kwargs: Keywords for np.interp.

  Returns:
    An array of shape [*N, *M], the interpolated values.
  """
  yp = fp.reshape([fp.shape[0], -1]).transpose()
  y = np.stack([np.interp(x, xp, zp, **kwargs) for zp in yp]).transpose()
  return y.reshape(x.shape[:1] + fp.shape[1:]).astype(np.float32) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:23,代碼來源:multi_problem_v2.py

示例15: _convert_to_torque_from_pwm

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import interp [as 別名]
def _convert_to_torque_from_pwm(self, pwm, true_motor_velocity):
    """Convert the pwm signal to torque.

    Args:
      pwm: The pulse width modulation.
      true_motor_velocity: The true motor velocity at the current moment. It is
        used to compute the back EMF voltage and the viscous damping.
    Returns:
      actual_torque: The torque that needs to be applied to the motor.
      observed_torque: The torque observed by the sensor.
    """
    observed_torque = np.clip(
        self._torque_constant *
        (np.asarray(pwm) * self._voltage / self._resistance),
        -OBSERVED_TORQUE_LIMIT, OBSERVED_TORQUE_LIMIT)

    # Net voltage is clipped at 50V by diodes on the motor controller.
    voltage_net = np.clip(
        np.asarray(pwm) * self._voltage -
        (self._torque_constant + self._viscous_damping) *
        np.asarray(true_motor_velocity), -VOLTAGE_CLIPPING, VOLTAGE_CLIPPING)
    current = voltage_net / self._resistance
    current_sign = np.sign(current)
    current_magnitude = np.absolute(current)
    # Saturate torque based on empirical current relation.
    actual_torque = np.interp(current_magnitude, self._current_table,
                              self._torque_table)
    actual_torque = np.multiply(current_sign, actual_torque)
    actual_torque = np.multiply(self._strength_ratios, actual_torque)
    return actual_torque, observed_torque 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:32,代碼來源:motor.py


注:本文中的numpy.interp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。