當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.int8方法代碼示例

本文整理匯總了Python中numpy.int8方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.int8方法的具體用法?Python numpy.int8怎麽用?Python numpy.int8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.int8方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: find_match

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def find_match(self, pred, gt):
    '''
    Match component to balls.
    '''
    batch_size, n_frames_input, n_components, _ = pred.shape
    diff = pred.reshape(batch_size, n_frames_input, n_components, 1, 2) - \
               gt.reshape(batch_size, n_frames_input, 1, n_components, 2)
    diff = np.sum(np.sum(diff ** 2, axis=-1), axis=1)
    # Direct indices
    indices = np.argmin(diff, axis=2)
    ambiguous = np.zeros(batch_size, dtype=np.int8)
    for i in range(batch_size):
      _, counts = np.unique(indices[i], return_counts=True)
      if not np.all(counts == 1):
        ambiguous[i] = 1
    return indices, ambiguous 
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:18,代碼來源:metrics.py

示例2: parse_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def parse_data(path, dataset, flatten):
    if dataset != 'train' and dataset != 't10k':
        raise NameError('dataset must be train or t10k')

    label_file = os.path.join(path, dataset + '-labels-idx1-ubyte')
    with open(label_file, 'rb') as file:
        _, num = struct.unpack(">II", file.read(8))
        labels = np.fromfile(file, dtype=np.int8)  # int8
        new_labels = np.zeros((num, 10))
        new_labels[np.arange(num), labels] = 1

    img_file = os.path.join(path, dataset + '-images-idx3-ubyte')
    with open(img_file, 'rb') as file:
        _, num, rows, cols = struct.unpack(">IIII", file.read(16))
        imgs = np.fromfile(file, dtype=np.uint8).reshape(num, rows, cols)  # uint8
        imgs = imgs.astype(np.float32) / 255.0
        if flatten:
            imgs = imgs.reshape([num, -1])

    return imgs, new_labels 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:22,代碼來源:utils.py

示例3: test_quantize_float32_to_int8

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_quantize_float32_to_int8():
    shape = rand_shape_nd(4)
    data = rand_ndarray(shape, 'default', dtype='float32')
    min_range = mx.nd.min(data)
    max_range = mx.nd.max(data)
    qdata, min_val, max_val = mx.nd.contrib.quantize(data, min_range, max_range, out_type='int8')
    data_np = data.asnumpy()
    min_range = min_range.asscalar()
    max_range = max_range.asscalar()
    real_range = np.maximum(np.abs(min_range), np.abs(max_range))
    quantized_range = 127.0
    scale = quantized_range / real_range
    assert qdata.dtype == np.int8
    assert min_val.dtype == np.float32
    assert max_val.dtype == np.float32
    assert same(min_val.asscalar(), -real_range)
    assert same(max_val.asscalar(), real_range)
    qdata_np = (np.sign(data_np) * np.minimum(np.abs(data_np) * scale + 0.5, quantized_range)).astype(np.int8)
    assert_almost_equal(qdata.asnumpy(), qdata_np, atol = 1) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_quantization.py

示例4: test_quantized_flatten

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_quantized_flatten():
    def check_quantized_flatten(shape, qdtype):
        if qdtype == 'uint8':
            data_low = 0.0
            data_high = 127.0
        else:
            data_low = -127.0
            data_high = 127.0
        qdata = mx.nd.random.uniform(low=data_low, high=data_high, shape=shape).astype(qdtype)
        min_data = mx.nd.array([-1023.343], dtype='float32')
        max_data = mx.nd.array([2343.324275], dtype='float32')
        qoutput, min_output, max_output = mx.nd.contrib.quantized_flatten(qdata, min_data, max_data)
        assert qoutput.ndim == 2
        assert qoutput.shape[0] == qdata.shape[0]
        assert qoutput.shape[1] == np.prod(qdata.shape[1:])
        assert same(qdata.asnumpy().flatten(), qoutput.asnumpy().flatten())
        assert same(min_data.asnumpy(), min_output.asnumpy())
        assert same(max_data.asnumpy(), max_output.asnumpy())

    for qdtype in ['int8', 'uint8']:
        check_quantized_flatten((10,), qdtype)
        check_quantized_flatten((10, 15), qdtype)
        check_quantized_flatten((10, 15, 18), qdtype)
        check_quantized_flatten((3, 4, 23, 23), qdtype) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:test_quantization.py

示例5: main

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def main():
    print('create y...')
    y = np.random.randint(2, size=N_OBS)
    print('create X...')
    row = np.random.randint(N_OBS, size=N_VALUE)
    col = np.random.randint(N_FEATURE, size=N_VALUE)
    data = np.ones(N_VALUE)
    X = sparse.csr_matrix((data, (row, col)), dtype=np.int8)

    print('train...')
    profiler = cProfile.Profile(subcalls=True, builtins=True, timeunit=0.001,)
    clf = FTRL(interaction=False)
    profiler.enable()
    clf.fit(X, y)
    profiler.disable()
    profiler.print_stats()

    p = clf.predict(X)
    print('AUC: {:.4f}'.format(auc(y, p)))

    assert auc(y, p) > .5 
開發者ID:jeongyoonlee,項目名稱:Kaggler,代碼行數:23,代碼來源:test_ftrl.py

示例6: frompointer

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def frompointer(pointer, count, dtype=float):
    '''Interpret a buffer that the pointer refers to as a 1-dimensional array.

    Args:
        pointer : int or ctypes pointer
            address of a buffer
        count : int
            Number of items to read.
        dtype : data-type, optional
            Data-type of the returned array; default: float.

    Examples:

    >>> s = numpy.ones(3, dtype=numpy.int32)
    >>> ptr = s.ctypes.data
    >>> frompointer(ptr, count=6, dtype=numpy.int16)
    [1, 0, 1, 0, 1, 0]
    '''
    dtype = numpy.dtype(dtype)
    count *= dtype.itemsize
    buf = (ctypes.c_char * count).from_address(pointer)
    a = numpy.ndarray(count, dtype=numpy.int8, buffer=buf)
    return a.view(dtype) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:25,代碼來源:numpy_helper.py

示例7: test_no_offset_scale

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_no_offset_scale():
    # Specific tests of no-offset scaling
    SAW = SlopeArrayWriter
    # Floating point
    for data in ((-128, 127),
                  (-128, 126),
                  (-128, -127),
                  (-128, 0),
                  (-128, -1),
                  (126, 127),
                  (-127, 127)):
        aw = SAW(np.array(data, dtype=np.float32), np.int8)
        assert_equal(aw.slope, 1.0)
    aw = SAW(np.array([-126, 127 * 2.0], dtype=np.float32), np.int8)
    assert_equal(aw.slope, 2)
    aw = SAW(np.array([-128 * 2.0, 127], dtype=np.float32), np.int8)
    assert_equal(aw.slope, 2)
    # Test that nasty abs behavior does not upset us
    n = -2**15
    aw = SAW(np.array([n, n], dtype=np.int16), np.uint8)
    assert_array_almost_equal(aw.slope, n / 255.0, 5) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:23,代碼來源:test_arraywriters.py

示例8: test_calculate_scale

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_calculate_scale():
    # Test for special cases in scale calculation
    npa = np.array
    # Here the offset handles it
    res = calculate_scale(npa([-2, -1], dtype=np.int8), np.uint8, True)
    assert_equal(res, (1.0, -2.0, None, None))
    # Not having offset not a problem obviously
    res = calculate_scale(npa([-2, -1], dtype=np.int8), np.uint8, 0)
    assert_equal(res, (-1.0, 0.0, None, None))
    # Case where offset handles scaling
    res = calculate_scale(npa([-1, 1], dtype=np.int8), np.uint8, 1)
    assert_equal(res, (1.0, -1.0, None, None))
    # Can't work for no offset case
    assert_raises(ValueError,
                  calculate_scale, npa([-1, 1], dtype=np.int8), np.uint8, 0)
    # Offset trick can't work when max is out of range
    res = calculate_scale(npa([-1, 255], dtype=np.int16), np.uint8, 1)
    assert_not_equal(res, (1.0, -1.0, None, None)) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:20,代碼來源:test_scaling.py

示例9: test_a2f_min_max

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_a2f_min_max():
    str_io = BytesIO()
    for in_dt in (np.float32, np.int8):
        for out_dt in (np.float32, np.int8):
            arr = np.arange(4, dtype=in_dt)
            # min thresholding
            data_back = write_return(arr, str_io, out_dt, 0, 0, 1, 1)
            assert_array_equal(data_back, [1, 1, 2, 3])
            # max thresholding
            data_back = write_return(arr, str_io, out_dt, 0, 0, 1, None, 2)
            assert_array_equal(data_back, [0, 1, 2, 2])
            # min max thresholding
            data_back = write_return(arr, str_io, out_dt, 0, 0, 1, 1, 2)
            assert_array_equal(data_back, [1, 1, 2, 2])
    # Check that works OK with scaling and intercept
    arr = np.arange(4, dtype=np.float32)
    data_back = write_return(arr, str_io, np.int, 0, -1, 0.5, 1, 2)
    assert_array_equal(data_back * 0.5 - 1, [1, 1, 2, 2])
    # Even when scaling is negative
    data_back = write_return(arr, str_io, np.int, 0, 1, -0.5, 1, 2)
    assert_array_equal(data_back * -0.5 + 1, [1, 1, 2, 2]) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:23,代碼來源:test_utils.py

示例10: test_can_cast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_can_cast():
    tests = ((np.float32, np.float32, True, True, True),
             (np.float64, np.float32, True, True, True),
             (np.complex128, np.float32, False, False, False),
             (np.float32, np.complex128, True, True, True),
             (np.float32, np.uint8, False, True, True),
             (np.uint32, np.complex128, True, True, True),
             (np.int64, np.float32, True, True, True),
             (np.complex128, np.int16, False, False, False),
             (np.float32, np.int16, False, True, True),
             (np.uint8, np.int16, True, True, True),
             (np.uint16, np.int16, False, True, True),
             (np.int16, np.uint16, False, False, True),
             (np.int8, np.uint16, False, False, True),
             (np.uint16, np.uint8, False, True, True),
             )
    for intype, outtype, def_res, scale_res, all_res in tests:
        assert_equal(def_res, can_cast(intype, outtype))
        assert_equal(scale_res, can_cast(intype, outtype, False, True))
        assert_equal(all_res, can_cast(intype, outtype, True, True)) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:22,代碼來源:test_utils.py

示例11: testEnumArrayTypeItem

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def testEnumArrayTypeItem(self):
        mapping = {'RED': 0, 'GREEN': 1, 'BLUE': 2}
        dt_enum = special_dtype(enum=(np.int8, mapping))
        typeItem = hdf5dtype.getTypeItem(dt_enum)
        dt_array = np.dtype('(2,3)'+dt_enum.str, metadata=dict(dt_enum.metadata))

        typeItem = hdf5dtype.getTypeItem(dt_array)

        self.assertEqual(typeItem['class'], 'H5T_ARRAY')
        self.assertTrue("dims" in typeItem)
        self.assertEqual(typeItem["dims"], (2,3))
        baseItem = typeItem['base']
        self.assertEqual(baseItem['class'], 'H5T_ENUM')
        self.assertTrue('mapping' in baseItem)
        self.assertEqual(baseItem['mapping']['GREEN'], 1)
        self.assertTrue("base" in baseItem)
        basePrim = baseItem["base"]
        self.assertEqual(basePrim["class"], 'H5T_INTEGER')
        self.assertEqual(basePrim['base'], 'H5T_STD_I8LE')
        typeSize = hdf5dtype.getItemSize(typeItem)
        self.assertEqual(typeSize, 6)  # one-byte for base enum type * shape of (2,3) 
開發者ID:HDFGroup,項目名稱:hsds,代碼行數:23,代碼來源:hdf5dtypeTest.py

示例12: test_payload_getitem_setitem

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def test_payload_getitem_setitem(self, item):
        data = self.payload.data
        sel_data = data[item]
        assert np.all(self.payload[item] == sel_data)
        payload = self.Payload(self.payload.words.copy(), sample_shape=(2,),
                               bps=8, complex_data=False)
        assert payload == self.payload
        payload[item] = 1 - sel_data
        check = self.payload.data
        check[item] = 1 - sel_data
        assert np.all(payload[item] == 1 - sel_data)
        assert np.all(payload.data == check)
        assert np.all(payload[:]
                      == payload.words.view(np.int8).reshape(-1, 2))
        assert payload != self.payload
        payload[item] = sel_data
        assert np.all(payload[item] == sel_data)
        assert payload == self.payload
        payload = self.Payload.fromdata(data + 1j * data, bps=8)
        sel_data = payload.data[item]
        assert np.all(payload[item] == sel_data)
        payload[item] = 1 - sel_data
        check = payload.data
        check[item] = 1 - sel_data
        assert np.all(payload.data == check) 
開發者ID:mhvk,項目名稱:baseband,代碼行數:27,代碼來源:test_base.py

示例13: _convert

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def _convert(self, vals):
        res = {}
        for k, v in vals.items():
            if isinstance(v, (np.int, np.int8, np.int16, np.int32, np.int64)):
                v = int(v)
            elif isinstance(v, (np.float, np.float16, np.float32, np.float64)):
                v = float(v)
            elif isinstance(v, Labels):
                v = list(v)
            elif isinstance(v, np.ndarray):
                v = v.tolist()
            elif isinstance(v, dict):
                v = self._convert(v)
            res[k] = v
        return res 
開發者ID:mme,項目名稱:vergeml,代碼行數:17,代碼來源:env.py

示例14: _toscalar

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def _toscalar(v):
    if isinstance(v, (np.float16, np.float32, np.float64,
                      np.uint8, np.uint16, np.uint32, np.uint64,
                      np.int8, np.int16, np.int32, np.int64)):
        return np.asscalar(v)
    else:
        return v 
開發者ID:mme,項目名稱:vergeml,代碼行數:9,代碼來源:env.py

示例15: convert

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int8 [as 別名]
def convert(self, complex_iq):
        intlv = self._interleave(complex_iq)
        clipped = self._clip(intlv)
        converted = 127. * clipped
        hackrf_out = converted.astype(np.int8)
        return hackrf_out 
開發者ID:polygon,項目名稱:spectrum_painter,代碼行數:8,代碼來源:radios.py


注:本文中的numpy.int8方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。