本文整理匯總了Python中numpy.int方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.int方法的具體用法?Python numpy.int怎麽用?Python numpy.int使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.int方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_bitmap_mask_crop
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def test_bitmap_mask_crop():
# crop with empty bitmap masks
dummy_bbox = np.array([0, 10, 10, 27], dtype=np.int)
raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
bitmap_masks = BitmapMasks(raw_masks, 28, 28)
cropped_masks = bitmap_masks.crop(dummy_bbox)
assert len(cropped_masks) == 0
assert cropped_masks.height == 17
assert cropped_masks.width == 10
# crop with bitmap masks contain 3 instances
raw_masks = dummy_raw_bitmap_masks((3, 28, 28))
bitmap_masks = BitmapMasks(raw_masks, 28, 28)
cropped_masks = bitmap_masks.crop(dummy_bbox)
assert len(cropped_masks) == 3
assert cropped_masks.height == 17
assert cropped_masks.width == 10
x1, y1, x2, y2 = dummy_bbox
assert (cropped_masks.masks == raw_masks[:, y1:y2, x1:x2]).all()
# crop with invalid bbox
with pytest.raises(AssertionError):
dummy_bbox = dummy_bboxes(2, 28, 28)
bitmap_masks.crop(dummy_bbox)
示例2: _project_im_rois
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def _project_im_rois(im_rois, scales):
"""Project image RoIs into the image pyramid built by _get_image_blob.
Arguments:
im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
scales (list): scale factors as returned by _get_image_blob
Returns:
rois (ndarray): R x 4 matrix of projected RoI coordinates
levels (list): image pyramid levels used by each projected RoI
"""
im_rois = im_rois.astype(np.float, copy=False)
if len(scales) > 1:
widths = im_rois[:, 2] - im_rois[:, 0] + 1
heights = im_rois[:, 3] - im_rois[:, 1] + 1
areas = widths * heights
scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2)
diff_areas = np.abs(scaled_areas - 224 * 224)
levels = diff_areas.argmin(axis=1)[:, np.newaxis]
else:
levels = np.zeros((im_rois.shape[0], 1), dtype=np.int)
rois = im_rois * scales[levels]
return rois, levels
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:26,代碼來源:test.py
示例3: __getitem__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def __getitem__(self, idx):
"""Get training/test data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Training/test data (with annotation if `test_mode` is set
True).
"""
if self.test_mode:
return self.prepare_test_img(idx)
while True:
data = self.prepare_train_img(idx)
if data is None:
idx = self._rand_another(idx)
continue
return data
示例4: prepare_test_img
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def prepare_test_img(self, idx):
"""Get testing data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Testing data after pipeline with new keys intorduced by
piepline.
"""
img_info = self.data_infos[idx]
results = dict(img_info=img_info)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
return self.pipeline(results)
示例5: to_image_spec
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def to_image_spec(img, **kw):
'''
to_image_spec(img) yields a dictionary of meta-data for the given nibabel image object img.
to_image_spec(hdr) yields the equivalent meta-data for the given nibabel image header.
Note that obj may also be a mapping object, in which case it is returned verbatim.
'''
if pimms.is_vector(img,'int') and is_tuple(img) and len(img) < 5:
r = image_array_to_spec(np.zeros(img))
elif pimms.is_map(img): r = img
elif is_image_header(img): r = image_header_to_spec(img)
elif is_image(img): r = image_to_spec(img)
elif is_image_array(img): r = image_array_to_spec(img)
else: raise ValueError('cannot convert object of type %s to image-spec' % type(img))
if len(kw) > 0: r = {k:v for m in (r,kw) for (k,v) in six.iteritems(m)}
# normalize the entries
for (k,aliases) in six.iteritems(imspec_aliases):
if k in r: continue
for al in aliases:
if al in r:
val = r[al]
r = pimms.assoc(pimms.dissoc(r, al), k, val)
break
return r
示例6: cleaned_visual_areas
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def cleaned_visual_areas(visual_areas, faces):
'''
mdl.cleaned_visual_areas is the same as mdl.visual_areas except that vertices with visual
area values of 0 (boundary values) are given the mode of their neighbors.
'''
area_ids = np.array(visual_areas)
boundaryNeis = {}
for (b,inside) in [(b, set(inside))
for t in faces.T
for (bound, inside) in [([i for i in t if area_ids[i] == 0],
[i for i in t if area_ids[i] != 0])]
if len(bound) > 0 and len(inside) > 0
for b in bound]:
if b in boundaryNeis: boundaryNeis[b] |= inside
else: boundaryNeis[b] = inside
for (b,neis) in six.iteritems(boundaryNeis):
area_ids[b] = np.argmax(np.bincount(area_ids[list(neis)]))
return pimms.imm_array(np.asarray(area_ids, dtype=np.int))
示例7: curve_length
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def curve_length(self, start=None, end=None, precision=0.01):
'''
Calculates the length of the curve by dividing the curve up
into pieces of parameterized-length <precision>.
'''
if start is None: start = self.t[0]
if end is None: end = self.t[-1]
from scipy import interpolate
if self.order == 1:
# we just want to add up along the steps...
ii = [ii for (ii,t) in enumerate(self.t) if start < t and t < end]
ts = np.concatenate([[start], self.t[ii], [end]])
xy = np.vstack([[self(start)], self.coordinates[:,ii].T, [self(end)]])
return np.sum(np.sqrt(np.sum((xy[1:] - xy[:-1])**2, axis=1)))
else:
t = np.linspace(start, end, int(np.ceil((end-start)/precision)))
dt = t[1] - t[0]
dx = interpolate.splev(t, self.splrep[0], der=1)
dy = interpolate.splev(t, self.splrep[1], der=1)
return np.sum(np.sqrt(dx**2 + dy**2)) * dt
示例8: dqn_sym_nips
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def dqn_sym_nips(action_num, data=None, name='dqn'):
"""Structure of the Deep Q Network in the NIPS 2013 workshop paper:
Playing Atari with Deep Reinforcement Learning (https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)
Parameters
----------
action_num : int
data : mxnet.sym.Symbol, optional
name : str, optional
"""
if data is None:
net = mx.symbol.Variable('data')
else:
net = data
net = mx.symbol.Convolution(data=net, name='conv1', kernel=(8, 8), stride=(4, 4), num_filter=16)
net = mx.symbol.Activation(data=net, name='relu1', act_type="relu")
net = mx.symbol.Convolution(data=net, name='conv2', kernel=(4, 4), stride=(2, 2), num_filter=32)
net = mx.symbol.Activation(data=net, name='relu2', act_type="relu")
net = mx.symbol.Flatten(data=net)
net = mx.symbol.FullyConnected(data=net, name='fc3', num_hidden=256)
net = mx.symbol.Activation(data=net, name='relu3', act_type="relu")
net = mx.symbol.FullyConnected(data=net, name='fc4', num_hidden=action_num)
net = mx.symbol.Custom(data=net, name=name, op_type='DQNOutput')
return net
示例9: _validate_csr_generation_inputs
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def _validate_csr_generation_inputs(num_rows, num_cols, density,
distribution="uniform"):
"""Validates inputs for csr generation helper functions
"""
total_nnz = int(num_rows * num_cols * density)
if density < 0 or density > 1:
raise ValueError("density has to be between 0 and 1")
if num_rows <= 0 or num_cols <= 0:
raise ValueError("num_rows or num_cols should be greater than 0")
if distribution == "powerlaw":
if total_nnz < 2 * num_rows:
raise ValueError("not supported for this density: %s"
" for this shape (%s, %s)"
" Please keep :"
" num_rows * num_cols * density >= 2 * num_rows"
% (density, num_rows, num_cols))
示例10: gen_buckets_probs_with_ppf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def gen_buckets_probs_with_ppf(ppf, nbuckets):
"""Generate the buckets and probabilities for chi_square test when the ppf (Quantile function)
is specified.
Parameters
----------
ppf : function
The Quantile function that takes a probability and maps it back to a value.
It's the inverse of the cdf function
nbuckets : int
size of the buckets
Returns
-------
buckets : list of tuple
The generated buckets
probs : list
The generate probabilities
"""
assert nbuckets > 0
probs = [1.0 / nbuckets for _ in range(nbuckets)]
buckets = [(ppf(i / float(nbuckets)), ppf((i + 1) / float(nbuckets))) for i in range(nbuckets)]
return buckets, probs
示例11: _project_to_map
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def _project_to_map(map, vertex, wt=None, ignore_points_outside_map=False):
"""Projects points to map, returns how many points are present at each
location."""
num_points = np.zeros((map.size[1], map.size[0]))
vertex_ = vertex[:, :2] - map.origin
vertex_ = np.round(vertex_ / map.resolution).astype(np.int)
if ignore_points_outside_map:
good_ind = np.all(np.array([vertex_[:,1] >= 0, vertex_[:,1] < map.size[1],
vertex_[:,0] >= 0, vertex_[:,0] < map.size[0]]),
axis=0)
vertex_ = vertex_[good_ind, :]
if wt is not None:
wt = wt[good_ind, :]
if wt is None:
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), 1)
else:
assert(wt.shape[0] == vertex.shape[0]), \
'number of weights should be same as vertices.'
np.add.at(num_points, (vertex_[:, 1], vertex_[:, 0]), wt)
return num_points
示例12: spikify_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
""" Apply spikes to a continuous dataset whose values are between 0.0 and 1.0
Args:
data_e: nexamples length list of NxT trials
dt: how often the data are sampled
max_firing_rate: the firing rate that is associated with a value of 1.0
Returns:
spikified_data_e: a list of length b of the data represented as spikes,
sampled from the underlying poisson process.
"""
spikifies_data_e = []
E = len(data_e)
spikes_e = []
for e in range(E):
data = data_e[e]
N,T = data.shape
data_s = np.zeros([N,T]).astype(np.int)
for n in range(N):
f = data[n,:]
s = rng.poisson(f*max_firing_rate*dt, size=T)
data_s[n,:] = s
spikes_e.append(data_s)
return spikes_e
示例13: GenerateSingleCode
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def GenerateSingleCode(code_shape):
code = np.zeros(code_shape, dtype=np.int)
keep_value_proba = 0.8
height = code_shape[0]
width = code_shape[1]
depth = code_shape[2]
for d in xrange(depth):
for y in xrange(height):
for x in xrange(width):
v1 = ComputeLineCrc(code, width, y, x, d)
v2 = ComputeDepthCrc(code, y, x, d)
v = 1 if (v1 + v2 >= 6) else 0
if np.random.rand() < keep_value_proba:
code[y, x, d] = v
else:
code[y, x, d] = 1 - v
return code
示例14: _evaluate_final
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def _evaluate_final(self, model, xy_test, batch_size, history):
res = {}
pred_test = None
if 'val_acc' in history.history:
res['val_acc'] = max(history.history['val_acc'])
rev_ix = -1 - list(reversed(history.history['val_acc'])).index(res['val_acc'])
res['val_loss'] = history.history['val_loss'][rev_ix]
res['acc'] = history.history['acc'][-1]
res['loss'] = history.history['loss'][-1]
if len(xy_test[0]):
from sklearn.metrics import classification_report, roc_auc_score
# evaluate with test data
x_test, y_test = xy_test
pred_test = model.predict(x_test, batch_size=batch_size, verbose=0)
test_loss, test_acc = model.evaluate(x_test, y_test, batch_size=batch_size, verbose=0)
res['test_loss'] = test_loss
res['test_acc'] = test_acc
report = classification_report(y_true = np.argmax(y_test, axis=1),
y_pred = np.argmax(pred_test, axis=1),
target_names=self.labels,
digits=4,
output_dict=True)
res['auc'] = roc_auc_score(y_test.astype(np.int), pred_test)
for label in self.labels:
stats = report[label]
res[label+"-precision"] = stats['precision']
res[label+"-recall"] = stats['recall']
res[label+"-f1"] = stats['f1-score']
return pred_test, res
示例15: _load_yaml_and_configure
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import int [as 別名]
def _load_yaml_and_configure(self, path, label, cache, device, device_memory): # pylint: disable=R0913
doc = load_yaml_file(path, label)
try:
doc['device'] = parse_device(doc.get('device', {}),
device_id=device,
device_memory=device_memory)
doc['data'] = parse_data(doc.get('data', {}), cache=cache, plugins=self.plugins)
if 'random-seed' in doc and not isinstance(doc['random-seed'], int):
raise VergeMLError('Invalid value option random-seed.',
'random-seed must be an integer value.',
hint_type='value',
hint_key='random-seed')
except VergeMLError as err:
if err.hint_key:
with open(path) as file:
definition = yaml_find_definition(file, err.hint_key, err.hint_type)
if definition:
line, column, length = definition
err.message = display_err_in_file(path, line, column, str(err), length)
# clear suggestion because it is already contained in the error message.
err.suggestion = None
raise err
else:
raise err
else:
raise err
return doc