當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.insert方法代碼示例

本文整理匯總了Python中numpy.insert方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.insert方法的具體用法?Python numpy.insert怎麽用?Python numpy.insert使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.insert方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: predict_seq_mul

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def predict_seq_mul(model, data, win_size, pred_len):
    """
    Predicts multiple sequences
    Input: keras model, testing data, window size, prediction length
    Output: Predicted sequence

    Note: Run from timeSeriesPredict.py
    """
    pred_seq = []
    for i in range(len(data)//pred_len):
        current = data[i * pred_len]
        predicted = []
        for j in range(pred_len):
            predicted.append(model.predict(current[None, :, :])[0, 0])
            current = current[1:]
            current = np.insert(current, [win_size - 1], predicted[-1], axis=0)
        pred_seq.append(predicted)
    return pred_seq 
開發者ID:dhingratul,項目名稱:Stock-Price-Prediction,代碼行數:20,代碼來源:helper.py

示例2: predict_all

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def predict_all(X, all_theta):
    rows = X.shape[0]
    params = X.shape[1]
    num_labels = all_theta.shape[0]
    
    # same as before, insert ones to match the shape
    X = np.insert(X, 0, values=np.ones(rows), axis=1)
    
    # convert to matrices
    X = np.matrix(X)
    all_theta = np.matrix(all_theta)
    
    # compute the class probability for each class on each training instance
    h = sigmoid(X * all_theta.T)
    
    # create array of the index with the maximum probability
    h_argmax = np.argmax(h, axis=1)
    
    # because our array was zero-indexed we need to add one for the true label prediction
    h_argmax = h_argmax + 1
    
    return h_argmax 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:24,代碼來源:4_multi_classification.py

示例3: prepare_poly_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def prepare_poly_data(*args, power):
    """
    args: keep feeding in X, Xval, or Xtest
        will return in the same order
    """
    def prepare(x):
        # expand feature
        df = poly_features(x, power=power)

        # normalization
        ndarr = normalize_feature(df).as_matrix()

        # add intercept term
        return np.insert(ndarr, 0, np.ones(ndarr.shape[0]), axis=1)

    return [prepare(x) for x in args] 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:18,代碼來源:6_bias_variance.py

示例4: collect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def collect(self, index, dataDict, check=True):
        """
        Collect atom given its index.

        :Parameters:
            #. index (int): The atom index to collect.
            #. dataDict (dict): The atom data dict to collect.
            #. check (boolean):  Whether to check dataDict keys before
               collecting. If set to False, user promises that collected
               data is a dictionary and contains the needed keys.
        """
        assert not self.is_collected(index), LOGGER.error("attempting to collect and already collected atom of index '%i'"%index)
        # add data
        if check:
            assert isinstance(dataDict, dict), LOGGER.error("dataDict must be a dictionary of data where keys are dataKeys")
            assert tuple(sorted(dataDict)) == self.__dataKeys, LOGGER.error("dataDict keys don't match promised dataKeys")
        self.__collectedData[index] = dataDict
        # set indexes sorted array
        idx = np.searchsorted(a=self.__indexesSortedArray, v=index, side='left')
        self.__indexesSortedArray = np.insert(self.__indexesSortedArray, idx, index)
        # set state
        self.__state = str(uuid.uuid1()) 
開發者ID:bachiraoun,項目名稱:fullrmc,代碼行數:24,代碼來源:Collection.py

示例5: release

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def release(self, index):
        """
        Release atom from list of collected atoms and return its
        collected data.

        :Parameters:
            #. index (int): The atom index to release.

        :Returns:
            #. dataDict (dict): The released atom collected data.
        """
        if not self.is_collected(index):
            LOGGER.warn("Attempting to release atom %i that is not collected."%index)
            return
        index = self.__collectedData.pop(index)
        # set indexes sorted array
        idx = np.searchsorted(a=self.__indexesSortedArray, v=index, side='left')
        self.__indexesSortedArray = np.insert(self.__indexesSortedArray, idx, index)
        # set state
        self.__state = str(uuid.uuid1())
        # return
        return index 
開發者ID:bachiraoun,項目名稱:fullrmc,代碼行數:24,代碼來源:Collection.py

示例6: regression_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def regression_data():
    f = open(path + "regression_data1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1 = data[:, 1]
    f = open(path + "regression_data2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2 = data[:, 1]
    x1 = np.vstack((x1, x2))
    y1 = np.hstack((y1, y2))

    f = open(path + "regression_data_test1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1_test = data[:, 1]
    f = open(path + "regression_data_test2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2_test = data[:, 1]
    x1_test = np.vstack((x1_test, x2_test))
    y1_test = np.hstack((y1_test, y2_test))
    return x1, y1, x1_test, y1_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:25,代碼來源:datasets.py

示例7: ex3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def ex3(replication=2):
    f = open(path + "ex3.txt")
    train_data = np.loadtxt(f, delimiter=",")
    f = open(path + "ex3_test.txt")
    test_data = np.loadtxt(f, delimiter=",")

    x_train = np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1)
    y_train = train_data[:, 2]
    x_test = np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1)
    y_test = test_data[:, 2]

    for i in range(replication - 1):
        x_train = np.vstack((x_train, np.insert(train_data[:, (0, 1)], 0, np.ones(len(train_data)), axis=1)))
        y_train = np.hstack((y_train, train_data[:, 2]))

        x_test = np.vstack((x_test, np.insert(test_data[:, (0, 1)], 0, np.ones(len(test_data)), axis=1)))
        y_test = np.hstack((y_test, test_data[:, 2]))

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:21,代碼來源:datasets.py

示例8: _correct_missed

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def _correct_missed(missed_idcs, peaks):

    corrected_peaks = peaks.copy()
    missed_idcs = np.array(missed_idcs)
    # Calculate the position(s) of new beat(s). Make sure to not generate
    # negative indices. prev_peaks and next_peaks must have the same
    # number of elements.
    valid_idcs = np.logical_and(missed_idcs > 1, missed_idcs < len(corrected_peaks))  # pylint: disable=E1111
    missed_idcs = missed_idcs[valid_idcs]
    prev_peaks = corrected_peaks[[i - 1 for i in missed_idcs]]
    next_peaks = corrected_peaks[missed_idcs]
    added_peaks = prev_peaks + (next_peaks - prev_peaks) / 2
    # Add the new peaks before the missed indices (see numpy docs).
    corrected_peaks = np.insert(corrected_peaks, missed_idcs, added_peaks)

    return corrected_peaks 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:18,代碼來源:signal_fixpeaks.py

示例9: _interpolate_missing

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def _interpolate_missing(peaks, interval, interval_max, sampling_rate):
    outliers = interval > interval_max
    outliers_loc = np.where(outliers)[0]
    if np.sum(outliers) == 0:
        return peaks, False

    # Delete large interval and replace by two unknown intervals
    interval[outliers] = np.nan
    interval = np.insert(interval, outliers_loc, np.nan)
    #    new_peaks_location = np.where(np.isnan(interval))[0]

    # Interpolate values
    interval = pd.Series(interval).interpolate().values
    peaks_corrected = _period_to_location(interval, sampling_rate, first_location=peaks[0])
    peaks = np.insert(peaks, outliers_loc, peaks_corrected[outliers_loc + np.arange(len(outliers_loc))])
    return peaks, True 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:18,代碼來源:signal_fixpeaks.py

示例10: _RLFindRoots

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def _RLFindRoots(nump, denp, kvect):
    """Find the roots for the root locus."""
    # Convert numerator and denominator to polynomials if they aren't
    roots = []
    for k in kvect:
        curpoly = denp + k * nump
        curroots = curpoly.r
        if len(curroots) < denp.order:
            # if I have fewer poles than open loop, it is because i have
            # one at infinity
            curroots = np.insert(curroots, len(curroots), np.inf)

        curroots.sort()
        roots.append(curroots)

    mymat = row_stack(roots)
    return mymat 
開發者ID:python-control,項目名稱:python-control,代碼行數:19,代碼來源:rlocus.py

示例11: SetDistribution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def SetDistribution(self, distinct_values):
        """This is all the values this column will ever see."""
        assert self.all_distinct_values is None
        # pd.isnull returns true for both np.nan and np.datetime64('NaT').
        is_nan = pd.isnull(distinct_values)
        contains_nan = np.any(is_nan)
        dv_no_nan = distinct_values[~is_nan]
        # NOTE: np.sort puts NaT values at beginning, and NaN values at end.
        # For our purposes we always add any null value to the beginning.
        vs = np.sort(np.unique(dv_no_nan))
        if contains_nan and np.issubdtype(distinct_values.dtype, np.datetime64):
            vs = np.insert(vs, 0, np.datetime64('NaT'))
        elif contains_nan:
            vs = np.insert(vs, 0, np.nan)
        if self.distribution_size is not None:
            assert len(vs) == self.distribution_size
        self.all_distinct_values = vs
        self.distribution_size = len(vs)
        return self 
開發者ID:naru-project,項目名稱:naru,代碼行數:21,代碼來源:common.py

示例12: estimate_norm

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def estimate_norm(lmk, image_size = 112, mode='arcface'):
  assert lmk.shape==(5,2)
  tform = trans.SimilarityTransform()
  lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
  min_M = []
  min_index = []
  min_error = float('inf') 
  if mode=='arcface':
    assert image_size==112
    src = arcface_src
  else:
    src = src_map[image_size]
  for i in np.arange(src.shape[0]):
    tform.estimate(lmk, src[i])
    M = tform.params[0:2,:]
    results = np.dot(M, lmk_tran.T)
    results = results.T
    error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2,axis=1)))
#         print(error)
    if error< min_error:
        min_error = error
        min_M = M
        min_index = i
  return min_M, min_index 
開發者ID:deepinsight,項目名稱:insightface,代碼行數:26,代碼來源:face_align.py

示例13: _build_paramvec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def _build_paramvec(self):
        """ Resizes self._paramvec and updates gpindices & parent members as needed,
            and will initialize new elements of _paramvec, but does NOT change
            existing elements of _paramvec (use _update_paramvec for this)"""
        v = _np.empty(0, 'd'); off = 0

        # Step 2: add parameters that don't exist yet
        for obj in self.values():
            if obj.gpindices is None or obj.parent is not self:
                #Assume all parameters of obj are new independent parameters
                v = _np.insert(v, off, obj.to_vector())
                num_new_params = obj.allocate_gpindices(off, self)
                off += num_new_params
            else:
                inds = obj.gpindices_as_array()
                M = max(inds) if len(inds) > 0 else -1; L = len(v)
                if M >= L:
                    #Some indices specified by obj are absent, and must be created.
                    w = obj.to_vector()
                    v = _np.concatenate((v, _np.empty(M + 1 - L, 'd')), axis=0)  # [v.resize(M+1) doesn't work]
                    for ii, i in enumerate(inds):
                        if i >= L: v[i] = w[ii]
                off = M + 1
        return v 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:26,代碼來源:instrument.py

示例14: calc_axon_contribution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def calc_axon_contribution(self, axons):
        xyret = np.column_stack((self.grid.xret.ravel(),
                                 self.grid.yret.ravel()))
        # Only include axon segments that are < `max_d2` from the soma. These
        # axon segments will have `sensitivity` > `self.min_ax_sensitivity`:
        max_d2 = -2.0 * self.axlambda ** 2 * np.log(self.min_ax_sensitivity)
        axon_contrib = []
        for xy, bundle in zip(xyret, axons):
            idx = np.argmin((bundle[:, 0] - xy[0]) ** 2 +
                            (bundle[:, 1] - xy[1]) ** 2)
            # Cut off the part of the fiber that goes beyond the soma:
            axon = np.flipud(bundle[0: idx + 1, :])
            # Add the exact location of the soma:
            axon = np.insert(axon, 0, xy, axis=0)
            # For every axon segment, calculate distance from soma by
            # summing up the individual distances between neighboring axon
            # segments (by "walking along the axon"):
            d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 +
                           np.diff(axon[:, 1], axis=0) ** 2)
            idx_d2 = d2 < max_d2
            sensitivity = np.exp(-d2[idx_d2] / (2.0 * self.axlambda ** 2))
            idx_d2 = np.insert(idx_d2, 0, False)
            contrib = np.column_stack((axon[idx_d2, :], sensitivity))
            axon_contrib.append(contrib)
        return axon_contrib 
開發者ID:pulse2percept,項目名稱:pulse2percept,代碼行數:27,代碼來源:beyeler2019.py

示例15: test_AxonMapModel_calc_axon_contribution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import insert [as 別名]
def test_AxonMapModel_calc_axon_contribution(engine):
    model = AxonMapModel(xystep=2, engine=engine, n_axons=10,
                         xrange=(-20, 20), yrange=(-15, 15),
                         axons_range=(-30, 30))
    model.build()
    xyret = np.column_stack((model.spatial.grid.xret.ravel(),
                             model.spatial.grid.yret.ravel()))
    bundles = model.spatial.grow_axon_bundles()
    axons = model.spatial.find_closest_axon(bundles)
    contrib = model.spatial.calc_axon_contribution(axons)

    # Check lambda math:
    for ax, xy in zip(contrib, xyret):
        axon = np.insert(ax, 0, list(xy) + [0], axis=0)
        d2 = np.cumsum(np.diff(axon[:, 0], axis=0) ** 2 +
                       np.diff(axon[:, 1], axis=0) ** 2)
        sensitivity = np.exp(-d2 / (2.0 * model.spatial.axlambda ** 2))
        npt.assert_almost_equal(sensitivity, ax[:, 2]) 
開發者ID:pulse2percept,項目名稱:pulse2percept,代碼行數:20,代碼來源:test_beyeler2019.py


注:本文中的numpy.insert方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。