本文整理匯總了Python中numpy.iinfo方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.iinfo方法的具體用法?Python numpy.iinfo怎麽用?Python numpy.iinfo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.iinfo方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: hparams
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def hparams(self, defaults, model_hparams):
p = model_hparams
# Filterbank extraction in bottom instead of preprocess_example is faster.
p.add_hparam("audio_preproc_in_bottom", False)
# The trainer seems to reserve memory for all members of the input dict
p.add_hparam("audio_keep_example_waveforms", False)
p.add_hparam("audio_sample_rate", 16000)
p.add_hparam("audio_preemphasis", 0.97)
p.add_hparam("audio_dither", 1.0 / np.iinfo(np.int16).max)
p.add_hparam("audio_frame_length", 25.0)
p.add_hparam("audio_frame_step", 10.0)
p.add_hparam("audio_lower_edge_hertz", 20.0)
p.add_hparam("audio_upper_edge_hertz", 8000.0)
p.add_hparam("audio_num_mel_bins", 80)
p.add_hparam("audio_add_delta_deltas", True)
p.add_hparam("num_zeropad_frames", 250)
p = defaults
# p.stop_at_eos = int(False)
p.input_modality = {"inputs": ("audio:speech_recognition_modality", None)}
p.target_modality = (registry.Modalities.SYMBOL, 256)
示例2: fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def fit(self, X, y):
if X.shape[0] == 0:
return self
elif np.unique(y).shape[0] <= 1:
self.update_aux(y)
return self
seed = self.random_state.integers(np.iinfo(np.int32).max)
self.model.set_params(random_state = seed)
self.model.fit(X, y)
n_nodes = self.model.tree_.node_count
self.pos = np.zeros(n_nodes, dtype=ctypes.c_long)
self.neg = np.zeros(n_nodes, dtype=ctypes.c_long)
pred_node = self.model.apply(X).astype(ctypes.c_long)
_create_node_counters(self.pos, self.neg, pred_node, y.astype(ctypes.c_double))
self.pos = self.pos.astype(ctypes.c_double) + self.beta_prior[0]
self.neg = self.neg.astype(ctypes.c_double) + self.beta_prior[1]
self.is_fitted = True
return self
示例3: _do_scaling
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def _do_scaling(self):
arr = self._array
out_dtype = self._out_dtype
assert out_dtype.kind in 'iu'
mn, mx = self.finite_range()
if arr.dtype.kind == 'f':
# Float to (u)int scaling
self._range_scale()
return
# (u)int to (u)int
info = np.iinfo(out_dtype)
out_max, out_min = info.max, info.min
# If left as int64, uint64, comparisons will default to floats, and
# these are inexact for > 2**53 - so convert to int
if (as_int(mx) <= as_int(out_max) and
as_int(mn) >= as_int(out_min)):
# already in range
return
# (u)int to (u)int scaling
self._iu2iu()
示例4: _get_valid_range
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def _get_valid_range(self):
''' Return valid range for image data
The valid range can come from the image 'valid_range' or
image 'valid_min' and 'valid_max', or, failing that, from the
data type range
'''
ddt = self.get_data_dtype()
info = np.iinfo(ddt.type)
try:
valid_range = self._image.valid_range
except AttributeError:
try:
valid_range = [self._image.valid_min,
self._image.valid_max]
except AttributeError:
valid_range = [info.min, info.max]
if valid_range[0] < info.min or valid_range[1] > info.max:
raise ValueError('Valid range outside input '
'data type range')
return np.asarray(valid_range, dtype=np.float)
示例5: test_int_int_min_max
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_int_int_min_max():
# Conversion between (u)int and (u)int
eps = np.finfo(np.float64).eps
rtol = 1e-6
for in_dt in IUINT_TYPES:
iinf = np.iinfo(in_dt)
arr = np.array([iinf.min, iinf.max], dtype=in_dt)
for out_dt in IUINT_TYPES:
try:
aw = SlopeInterArrayWriter(arr, out_dt)
except ScalingError:
continue
arr_back_sc = round_trip(aw)
# integer allclose
adiff = int_abs(arr - arr_back_sc)
rdiff = adiff / (arr + eps)
assert_true(np.all(rdiff < rtol))
示例6: test_int_int_slope
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_int_int_slope():
# Conversion between (u)int and (u)int for slopes only
eps = np.finfo(np.float64).eps
rtol = 1e-7
for in_dt in IUINT_TYPES:
iinf = np.iinfo(in_dt)
for out_dt in IUINT_TYPES:
kinds = np.dtype(in_dt).kind + np.dtype(out_dt).kind
if kinds in ('ii', 'uu', 'ui'):
arrs = (np.array([iinf.min, iinf.max], dtype=in_dt),)
elif kinds == 'iu':
arrs = (np.array([iinf.min, 0], dtype=in_dt),
np.array([0, iinf.max], dtype=in_dt))
for arr in arrs:
try:
aw = SlopeArrayWriter(arr, out_dt)
except ScalingError:
continue
assert_false(aw.slope == 0)
arr_back_sc = round_trip(aw)
# integer allclose
adiff = int_abs(arr - arr_back_sc)
rdiff = adiff / (arr + eps)
assert_true(np.all(rdiff < rtol))
示例7: test_able_casting
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_able_casting():
# Check the able_int_type function guesses numpy out type
types = np.sctypes['int'] + np.sctypes['uint']
for in_type in types:
in_info = np.iinfo(in_type)
in_mn, in_mx = in_info.min, in_info.max
A = np.zeros((1,), dtype=in_type)
for out_type in types:
out_info = np.iinfo(out_type)
out_mn, out_mx = out_info.min, out_info.max
B = np.zeros((1,), dtype=out_type)
ApBt = (A + B).dtype.type
able_type = able_int_type([in_mn, in_mx, out_mn, out_mx])
if able_type is None:
assert_equal(ApBt, np.float64)
continue
# Use str for comparison to avoid int32/64 vs intp comparison
# failures
assert_equal(np.dtype(ApBt).str, np.dtype(able_type).str)
示例8: _linear_transformation_to_lut
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def _linear_transformation_to_lut(linear_transformation,
max_value=None, dtype=numpy.uint16):
min_value = 0
if max_value is None:
max_value = numpy.iinfo(dtype).max
def gain_offset_to_lut(gain, offset):
logging.debug(
'Normalize: Calculating lut values for gain '
'{} and offset {}'.format(gain, offset))
lut = numpy.arange(min_value, max_value + 1, dtype=numpy.float)
return gain * lut + offset
lut = gain_offset_to_lut(linear_transformation.gain,
linear_transformation.offset)
logging.debug('Normalize: Clipping lut from [{}, {}] to [{},{}]'.format(
min(lut), max(lut), min_value, max_value))
numpy.clip(lut, min_value, max_value, lut)
return lut.astype(dtype)
示例9: _uniform_weight_alpha
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def _uniform_weight_alpha(sum_masked_arrays, output_datatype):
'''Calculates the cumulative mask of a list of masked array
Input:
sum_masked_arrays (list of numpy masked arrays): The list of
masked arrays to find the cumulative mask of, each element
represents one band.
(sums_masked_array.mask has a 1 for a no data pixel and
a 0 otherwise)
output_datatype (numpy datatype): The output datatype
Output:
output_alpha (numpy uint16 array): The output mask
(0 for a no data pixel, uint16 max value otherwise)
'''
output_alpha = numpy.ones(sum_masked_arrays[0].shape)
for band_sum_masked_array in sum_masked_arrays:
output_alpha[numpy.nonzero(band_sum_masked_array.mask == 1)] = 0
output_alpha = output_alpha.astype(output_datatype) * \
numpy.iinfo(output_datatype).max
return output_alpha
示例10: _parallel_predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def _parallel_predict(self, contexts: np.ndarray, is_predict: bool):
# Total number of contexts to predict
n_contexts = len(contexts)
# Partition contexts by job
n_jobs, n_contexts, starts = self._partition_contexts(n_contexts)
total_contexts = sum(n_contexts)
# Get seed value for each context
seeds = self.rng.randint(np.iinfo(np.int32).max, size=total_contexts)
# Perform parallel predictions
predictions = Parallel(n_jobs=n_jobs, backend=self.backend)(
delayed(self._predict_contexts)(
contexts[starts[i]:starts[i + 1]],
is_predict,
seeds[starts[i]:starts[i + 1]],
starts[i])
for i in range(n_jobs))
# Reduce
predictions = list(chain.from_iterable(t for t in predictions))
return predictions if len(predictions) > 1 else predictions[0]
示例11: test_big_indices
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_big_indices(self):
# ravel_multi_index for big indices (issue #7546)
if np.intp == np.int64:
arr = ([1, 29], [3, 5], [3, 117], [19, 2],
[2379, 1284], [2, 2], [0, 1])
assert_equal(
np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
[5627771580, 117259570957])
# test overflow checking for too big array (issue #7546)
dummy_arr = ([0],[0])
half_max = np.iinfo(np.intp).max // 2
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2))
assert_equal(
np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
assert_raises(ValueError,
np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
示例12: test_allclose
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
assert_(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
assert_(not allclose(a, b))
b[0] = np.inf
assert_(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
assert_(allclose(a, b, masked_equal=True))
assert_(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
assert_(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
assert_(allclose(a, a))
示例13: test_respect_dtype_singleton
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_respect_dtype_singleton(self):
# See gh-7203
for dt in self.itype:
lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_equal(sample.dtype, np.dtype(dt))
for dt in (bool, int, np.long):
lbnd = 0 if dt is bool else np.iinfo(dt).min
ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
# gh-7284: Ensure that we get Python data types
sample = self.rfunc(lbnd, ubnd, dtype=dt)
assert_(not hasattr(sample, 'dtype'))
assert_equal(type(sample), dt)
示例14: test_can_cast_values
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def test_can_cast_values(self):
# gh-5917
for dt in np.sctypes['int'] + np.sctypes['uint']:
ii = np.iinfo(dt)
assert_(np.can_cast(ii.min, dt))
assert_(np.can_cast(ii.max, dt))
assert_(not np.can_cast(ii.min - 1, dt))
assert_(not np.can_cast(ii.max + 1, dt))
for dt in np.sctypes['float']:
fi = np.finfo(dt)
assert_(np.can_cast(fi.min, dt))
assert_(np.can_cast(fi.max, dt))
# Custom exception class to test exception propagation in fromiter
示例15: argmin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import iinfo [as 別名]
def argmin(self, axis=None, skipna=True, *args, **kwargs):
"""
Returns the indices of the minimum values along an axis.
See `numpy.ndarray.argmin` for more information on the
`axis` parameter.
See Also
--------
numpy.ndarray.argmin
"""
nv.validate_argmin(args, kwargs)
nv.validate_minmax_axis(axis)
i8 = self.asi8
if self.hasnans:
mask = self._isnan
if mask.all() or not skipna:
return -1
i8 = i8.copy()
i8[mask] = np.iinfo('int64').max
return i8.argmin()