當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.identity方法代碼示例

本文整理匯總了Python中numpy.identity方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.identity方法的具體用法?Python numpy.identity怎麽用?Python numpy.identity使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.identity方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def __init__(self, n, order=5, mu=0.1, eps=0.001, w="random"):
        self.kind = "AP filter"
        self.n = self.check_int(
            n,'The size of filter must be an integer')
        self.order = self.check_int(
            order, 'The order of projection must be an integer')
        self.mu = self.check_float_param(mu, 0, 1000, "mu")
        self.eps = self.check_float_param(eps, 0, 1000, "eps")
        self.init_weights(w, self.n)
        self.w_history = False
        self.x_mem = np.zeros((self.n, self.order))
        self.d_mem = np.zeros(order)
        self.ide_eps = self.eps * np.identity(self.order)
        self.ide = np.identity(self.order)
        self.y_mem = False
        self.e_mem = False 
開發者ID:matousc89,項目名稱:padasip,代碼行數:18,代碼來源:ap.py

示例2: optimize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def optimize(self, sess, feed_dict):
    reg_input, reg_weight, old_values, targets = sess.run(
        [self.inputs, self.regression_weight, self.values, self.targets],
        feed_dict=feed_dict)

    intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac)

    # taken from rllab
    reg_coeff = 1e-5
    for _ in range(5):
      best_fit_weight = np.linalg.lstsq(
          reg_input.T.dot(reg_input) +
          reg_coeff * np.identity(reg_input.shape[1]),
          reg_input.T.dot(intended_values))[0]
      if not np.any(np.isnan(best_fit_weight)):
        break
      reg_coeff *= 10

    if len(best_fit_weight.shape) == 1:
      best_fit_weight = np.expand_dims(best_fit_weight, -1)

    sess.run(self.update_regression_weight,
             feed_dict={self.new_regression_weight: best_fit_weight}) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:optimizers.py

示例3: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def __init__(self, kernel_size, segment_num=None):
        """
        Args:
            input_size: dimention of input embedding
            kernel_size: kernel_size for CNN
            padding: padding for CNN
        hidden_size: hidden size
        """
        super().__init__()
        self.segment_num = segment_num
        if self.segment_num != None:
            self.mask_embedding = nn.Embedding(segment_num + 1, segment_num)
            self.mask_embedding.weight.data.copy_(torch.FloatTensor(np.concatenate([np.zeros((1, segment_num)), np.identity(segment_num)], axis=0)))
            self.mask_embedding.weight.requires_grad = False
            self._minus = -100
        self.pool = nn.MaxPool1d(kernel_size) 
開發者ID:thunlp,項目名稱:OpenNRE,代碼行數:18,代碼來源:max_pool.py

示例4: quat2mat

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def quat2mat(quaternion):
    """
    Converts given quaternion (x, y, z, w) to matrix.

    Args:
        quaternion: vec4 float angles

    Returns:
        3x3 rotation matrix
    """
    q = np.array(quaternion, dtype=np.float32, copy=True)[[3, 0, 1, 2]]
    n = np.dot(q, q)
    if n < EPS:
        return np.identity(3)
    q *= math.sqrt(2.0 / n)
    q = np.outer(q, q)
    return np.array(
        [
            [1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0]],
            [q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0]],
            [q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2]],
        ]
    ) 
開發者ID:StanfordVL,項目名稱:robosuite,代碼行數:25,代碼來源:transform_utils.py

示例5: test_linear_sum_assignment_input_validation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def test_linear_sum_assignment_input_validation():
    assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])

    C = [[1, 2, 3], [4, 5, 6]]
    assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C)))
    # assert_array_equal(linear_sum_assignment(C),
    #                    linear_sum_assignment(matrix(C)))

    I = np.identity(3)
    assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I))
    assert_raises(ValueError, linear_sum_assignment, I.astype(str))

    I[0][0] = np.nan
    assert_raises(ValueError, linear_sum_assignment, I)

    I = np.identity(3)
    I[1][1] = np.inf
    assert_raises(ValueError, linear_sum_assignment, I) 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:20,代碼來源:test_scipy_hungarian.py

示例6: lowdin

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def lowdin(s):
   e, v = numpy.linalg.eigh(s)
   return numpy.dot(v/numpy.sqrt(e), v.T.conj())

#def scdmU(coeff,ova):
#   aux = numpy.identity(ova.shape[0])
#   #aux = lowdin(ova)
#   no = coeff.shape[1]	
#   ova = reduce(numpy.dot,(coeff.T,ova,aux))
#   # ova = no*nb
#   q,r,piv = scipy.linalg.qr(ova, pivoting=True)
#   # In fact, it is just "Lowdin-orthonormalized PAO".
#   bc = ova[:,piv[:no]]
#   ova = numpy.dot(bc.T,bc)
#   s12inv = lowdin(ova)
#   u = numpy.dot(bc,s12inv)
#   return u

#------------------------------------------------
# Boys/PM-Localization
#------------------------------------------------ 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:23,代碼來源:pmloc.py

示例7: lowdinPop

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def lowdinPop(mol,coeff,ova,enorb,occ):
   print '\nLowdin population for LMOs:'
   nb,nc = coeff.shape
   s12 = sqrtm(ova)
   lcoeff = s12.dot(coeff)
   diff = reduce(numpy.dot,(lcoeff.T,lcoeff)) - numpy.identity(nc)
   print 'diff=',numpy.linalg.norm(diff)
   pthresh = 0.05
   labels = mol.ao_labels(None)
   nelec = 0.0
   for iorb in range(nc):
      vec = lcoeff[:,iorb]**2
      idx = list(numpy.argwhere(vec>pthresh))
      print ' iorb=',iorb,' occ=',occ[iorb],' <i|F|i>=',enorb[iorb]
      for iao in idx:
         print '    iao=',labels[iao],' pop=',vec[iao]
      nelec += occ[iorb]
   print 'nelec=',nelec
   return 0 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:ulocal.py

示例8: _test_ip_diag

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def _test_ip_diag(self,kmf,kshift=0):
        cc = kccsd.KUCCSD(kmf)
        Ecc = cc.kernel()[0]

        eom = kccsd_uhf.EOMIP(cc)
        imds = eom.make_imds()
        t1a,t1b = imds.t1
        nkpts, nocc_a, nvir_a = t1a.shape
        nkpts, nocc_b, nvir_b = t1b.shape
        nocc = nocc_a + nocc_b
        diag = kccsd_uhf.ipccsd_diag(eom,kshift,imds=imds)

        I = np.identity(diag.shape[0],dtype=complex)
        indices = np.arange(diag.shape[0])
        H = np.zeros((I.shape[0],len(indices)),dtype=complex)
        for j,idx in enumerate(indices):
            H[:,j] = kccsd_uhf.ipccsd_matvec(eom,I[:,idx],kshift,imds=imds)

        diag_ref = np.zeros(len(indices),dtype=complex)
        diag_out = np.zeros(len(indices),dtype=complex)
        for j,idx in enumerate(indices):
            diag_ref[j] = H[idx,j]
            diag_out[j] = diag[idx]
        diff = np.linalg.norm(diag_ref - diag_out)
        self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in IP diag: {}".format(diff)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:27,代碼來源:test_eom_kuccsd_diag.py

示例9: _test_ip_diag

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def _test_ip_diag(self,cc):
        eom = kccsd_ghf.EOMIP(cc)
        imds = eom.make_imds()
        nkpts, nocc, nvir = imds.t1.shape
        diag = kccsd_ghf.ipccsd_diag(eom,0,imds=imds)

        I = np.identity(diag.shape[0],dtype=complex)
        indices = np.arange(len(diag))
        H = np.zeros((I.shape[0],len(indices)),dtype=complex)
        for j,idx in enumerate(indices):
            H[:,j] = kccsd_ghf.ipccsd_matvec(eom,I[:,idx],0,imds=imds)

        diag_ref = np.zeros(len(indices),dtype=complex)
        diag_out = np.zeros(len(indices),dtype=complex)
        for j,idx in enumerate(indices):
            diag_ref[j] = H[idx,j]
            diag_out[j] = diag[idx]
        diff = np.linalg.norm(diag_ref - diag_out)
        self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in IP diag: {}".format(diff)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:test_eom_kgccsd_diag.py

示例10: _test_ea_diag

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def _test_ea_diag(self,cc):
       eom = kccsd_ghf.EOMEA(cc)
       imds = eom.make_imds()
       nkpts, nocc, nvir = imds.t1.shape
       diag = kccsd_ghf.eaccsd_diag(eom,0,imds=imds)

       I = np.identity(diag.shape[0],dtype=complex)
       indices = np.arange(len(diag))
       H = np.zeros((I.shape[0],len(indices)),dtype=complex)
       for j,idx in enumerate(indices):
           H[:,j] = kccsd_ghf.eaccsd_matvec(eom,I[:,idx],0,imds=imds)

       diag_ref = np.zeros(len(indices),dtype=complex)
       diag_out = np.zeros(len(indices),dtype=complex)
       for j,idx in enumerate(indices):
           diag_ref[j] = H[idx,j]
           diag_out[j] = diag[idx]
       diff = np.linalg.norm(diag_ref - diag_out)
       self.assertTrue(abs(diff) < KGCCSD_TEST_THRESHOLD,"Difference in EA diag: {}".format(diff)) 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:test_eom_kgccsd_diag.py

示例11: test_cell_n2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def test_cell_n2(L=5, mesh=[9]*3):
    cell = pbcgto.Cell()
    cell.unit = 'B'
    cell.atom.extend([['O', (L/2., L/2., L/2.)],
                      ['H', (L/2.-0.689440, L/2.+0.578509, L/2.)],
                      ['H', (L/2.+0.689440, L/2.-0.578509, L/2.)],
        ])
    cell.a = L * np.identity(3)

    cell.basis = 'sto-3g'
    cell.pseudo = 'gth-pade'
    cell.mesh = mesh

    cell.output = '/dev/null'
    cell.build()
    return cell 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:18,代碼來源:make_test_cell.py

示例12: _make_dm123

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def _make_dm123(self, state, norb, nelec, link_index=None, **kwargs):
        r"""Note this function does NOT compute the standard density matrix.
        The density matrices are reordered to match the the fci.rdm.make_dm123
        function (used by NEVPT code).
        The returned "2pdm" is :math:`\langle p^\dagger q r^\dagger s\rangle`;
        The returned "3pdm" is :math:`\langle p^\dagger q r^\dagger s t^\dagger u\rangle`.
        """
        onepdm, twopdm, threepdm = self.make_rdm123(state, norb, nelec, None, **kwargs)
        threepdm = numpy.einsum("mkijln->ijklmn", threepdm).copy()
        threepdm += numpy.einsum("jk,lm,in->ijklmn", numpy.identity(norb), numpy.identity(norb), onepdm)
        threepdm += numpy.einsum("jk,miln->ijklmn", numpy.identity(norb), twopdm)
        threepdm += numpy.einsum("lm,kijn->ijklmn", numpy.identity(norb), twopdm)
        threepdm += numpy.einsum("jm,kinl->ijklmn", numpy.identity(norb), twopdm)

        twopdm = numpy.einsum("iklj->ijkl", twopdm) + numpy.einsum("li,jk->ijkl", onepdm, numpy.identity(norb))

        return onepdm, twopdm, threepdm 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:shci.py

示例13: _make_dm123

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def _make_dm123(self, state, norb, nelec, link_index=None, **kwargs):
        r'''Note this function does NOT compute the standard density matrix.
        The density matrices are reordered to match the the fci.rdm.make_dm123
        function (used by NEVPT code).
        The returned "2pdm" is :math:`\langle p^\dagger q r^\dagger s\rangle`;
        The returned "3pdm" is :math:`\langle p^\dagger q r^\dagger s t^\dagger u\rangle`.
        '''
        onepdm, twopdm, threepdm = self.make_rdm123(state, norb, nelec, None, **kwargs)
        threepdm = numpy.einsum('mkijln->ijklmn',threepdm).copy()
        threepdm += numpy.einsum('jk,lm,in->ijklmn',numpy.identity(norb),numpy.identity(norb),onepdm)
        threepdm += numpy.einsum('jk,miln->ijklmn',numpy.identity(norb),twopdm)
        threepdm += numpy.einsum('lm,kijn->ijklmn',numpy.identity(norb),twopdm)
        threepdm += numpy.einsum('jm,kinl->ijklmn',numpy.identity(norb),twopdm)

        twopdm =(numpy.einsum('iklj->ijkl',twopdm)
               + numpy.einsum('li,jk->ijkl',onepdm,numpy.identity(norb)))

        return onepdm, twopdm, threepdm 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:20,代碼來源:dmrgci.py

示例14: get_init_guess

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def get_init_guess(self, nroots=1, diag=None, ascending = True):
       if diag is None :
           diag = self.ea_adc_diag()
       idx = None
       if ascending:
           idx = np.argsort(diag)
       else:
           idx = np.argsort(diag)[::-1]
       guess = np.zeros((diag.shape[0], nroots))
       min_shape = min(diag.shape[0], nroots)
       guess[:min_shape,:min_shape] = np.identity(min_shape)
       g = np.zeros((diag.shape[0], nroots))
       g[idx] = guess.copy()
       guess = []
       for p in range(g.shape[1]):
           guess.append(g[:,p])
       return guess 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:19,代碼來源:uadc.py

示例15: cluster

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import identity [as 別名]
def cluster(self, vectors, assign_clusters=False, trace=False):
        assert len(vectors) > 0

        # normalise the vectors
        if self._should_normalise:
            vectors = map(self._normalise, vectors)

        # use SVD to reduce the dimensionality
        if self._svd_dimensions and self._svd_dimensions < len(vectors[0]):
            [u, d, vt] = linalg.svd(numpy.transpose(array(vectors)))
            S = d[:self._svd_dimensions] * \
                numpy.identity(self._svd_dimensions, numpy.Float64)
            T = u[:,:self._svd_dimensions]
            Dt = vt[:self._svd_dimensions,:]
            vectors = numpy.transpose(numpy.matrixmultiply(S, Dt))
            self._Tt = numpy.transpose(T)
            
        # call abstract method to cluster the vectors
        self.cluster_vectorspace(vectors, trace)

        # assign the vectors to clusters
        if assign_clusters:
            print self._Tt, vectors
            return [self.classify(vector) for vector in vectors] 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:26,代碼來源:__init__.py


注:本文中的numpy.identity方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。