當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.i0方法代碼示例

本文整理匯總了Python中numpy.i0方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.i0方法的具體用法?Python numpy.i0怎麽用?Python numpy.i0使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.i0方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: execute

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import i0 [as 別名]
def execute(cls, ctx, op):
        x = ctx[op.inputs[0].key]
        xp = get_array_module(x)
        res = xp.i0(x)
        if not is_sparse_module(xp):
            res = res.reshape(op.outputs[0].shape)
        ctx[op.outputs[0].key] = res 
開發者ID:mars-project,項目名稱:mars,代碼行數:9,代碼來源:i0.py

示例2: test_i0

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import i0 [as 別名]
def test_i0(self):
        q = np.array([0., 10., 20.]) * u.percent
        out = np.i0(q)
        expected = np.i0(q.to_value(u.one)) * u.one
        assert isinstance(out, u.Quantity)
        assert np.all(out == expected)
        with pytest.raises(u.UnitsError):
            np.i0(self.q) 
開發者ID:holzschu,項目名稱:Carnets,代碼行數:10,代碼來源:test_quantity_non_ufuncs.py

示例3: i0

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import i0 [as 別名]
def i0(x, **kwargs):
    """
    Modified Bessel function of the first kind, order 0.

    Usually denoted :math:`I_0`.  This function does broadcast, but will *not*
    "up-cast" int dtype arguments unless accompanied by at least one float or
    complex dtype argument (see Raises below).

    Parameters
    ----------
    x : array_like, dtype float or complex
        Argument of the Bessel function.

    Returns
    -------
    out : Tensor, shape = x.shape, dtype = x.dtype
        The modified Bessel function evaluated at each of the elements of `x`.

    Raises
    ------
    TypeError: array cannot be safely cast to required type
        If argument consists exclusively of int dtypes.

    See Also
    --------
    scipy.special.iv, scipy.special.ive

    Notes
    -----
    We use the algorithm published by Clenshaw [1]_ and referenced by
    Abramowitz and Stegun [2]_, for which the function domain is
    partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
    polynomial expansions are employed in each interval. Relative error on
    the domain [0,30] using IEEE arithmetic is documented [3]_ as having a
    peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

    References
    ----------
    .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in
           *National Physical Laboratory Mathematical Tables*, vol. 5, London:
           Her Majesty's Stationery Office, 1962.
    .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical
           Functions*, 10th printing, New York: Dover, 1964, pp. 379.
           http://www.math.sfu.ca/~cbm/aands/page_379.htm
    .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

    Examples
    --------
    >>> import mars.tensor as mt

    >>> mt.i0([0.]).execute()
    array([1.])
    >>> mt.i0([0., 1. + 2j]).execute()
    array([ 1.00000000+0.j        ,  0.18785373+0.64616944j])

    """
    op = TensorI0(**kwargs)
    return op(x) 
開發者ID:mars-project,項目名稱:mars,代碼行數:60,代碼來源:i0.py

示例4: sample

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import i0 [as 別名]
def sample(self):            
        if self.tr_cond == 'all_gains':
            G = (1.0/self.stim_dur) * np.random.choice([1.0], size=(self.n_loc,self.batch_size))
            G = np.repeat(G,self.n_in,axis=0).T
            G = np.tile(G,(self.stim_dur,1,1))
            G = np.swapaxes(G,0,1)
        else:
            G = (0.5/self.stim_dur) * np.random.choice([1.0], size=(1,self.batch_size))
            G = np.repeat(G,self.n_in * self.n_loc, axis=0).T
            G = np.tile(G,(self.stim_dur,1,1))
            G = np.swapaxes(G,0,1)
        
        H = (1.0/self.resp_dur) * np.ones((self.batch_size,self.resp_dur,self.nneuron)) 
        
        # Target presence/absence and stimuli 
        C              = np.random.choice([0.0, 1.0], size=(self.batch_size,))
        C1ind          = np.where(C==1.0)[0]        # change

        S1             = np.pi * np.random.rand(self.n_loc, self.batch_size)
        S2             = S1.copy()
        S1             = np.repeat(S1,self.n_in,axis=0).T
        S1             = np.tile(S1,(self.stim_dur,1,1))
        S1             = np.swapaxes(S1,0,1)

        S2[np.random.randint(0,self.n_loc,size=(len(C1ind),)), C1ind] = np.pi * np.random.rand(len(C1ind))
        S2             = np.repeat(S2,self.n_in,axis=0).T
        S2             = np.tile(S2,(self.resp_dur,1,1))
        S2             = np.swapaxes(S2,0,1)
                
        # Noisy responses
        L1             = G * np.exp( self.kappa * (np.cos( 2.0 * (S1 - np.tile(self.phi, (self.batch_size,self.stim_dur,self.n_loc) ) ) ) - 1.0) ) # stim 1
        L2             = H * np.exp( self.kappa * (np.cos( 2.0 * (S2 - np.tile(self.phi, (self.batch_size,self.resp_dur,self.n_loc) ) ) ) - 1.0) ) # stim 2
        Ld             = (self.spon_rate / self.delay_dur) * np.ones((self.batch_size,self.delay_dur,self.nneuron))                                # delay

        R1             = np.random.poisson(L1)
        R2             = np.random.poisson(L2)
        Rd             = np.random.poisson(Ld)

        example_input  = np.concatenate((R1,Rd,R2), axis=1)
        example_output = np.repeat(C[:,np.newaxis],self.total_dur,axis=1)
        example_output = np.repeat(example_output[:,:,np.newaxis],1,axis=2)
        
        cum_R1         = np.sum(R1,axis=1) 
        cum_R2         = np.sum(R2,axis=1) 
        
        mu_x           = np.asarray([ np.arctan2( np.dot(cum_R1[:,i*self.n_in:(i+1)*self.n_in],np.sin(2.0*self.phi)), np.dot(cum_R1[:,i*self.n_in:(i+1)*self.n_in],np.cos(2.0*self.phi))) for i in range(self.n_loc) ])
        mu_y           = np.asarray([ np.arctan2( np.dot(cum_R2[:,i*self.n_in:(i+1)*self.n_in],np.sin(2.0*self.phi)), np.dot(cum_R2[:,i*self.n_in:(i+1)*self.n_in],np.cos(2.0*self.phi))) for i in range(self.n_loc) ])
        
        temp_x         = np.asarray([np.swapaxes(np.multiply.outer(cum_R1,cum_R1),1,2)[i,i,:,:] for i in range(self.batch_size)])
        temp_y         = np.asarray([np.swapaxes(np.multiply.outer(cum_R2,cum_R2),1,2)[i,i,:,:] for i in range(self.batch_size)])
        
        kappa_x        = np.asarray( [np.sqrt(np.sum(temp_x[:,i*self.n_in:(i+1)*self.n_in,i*self.n_in:(i+1)*self.n_in] * np.repeat(np.cos( np.subtract(np.expand_dims(self.phi,axis=1), np.expand_dims(self.phi,axis=1).T) )[np.newaxis,:,:],self.batch_size,axis=0),axis=(1,2))) for i in range(self.n_loc) ] )
        kappa_y        = np.asarray( [np.sqrt(np.sum(temp_y[:,i*self.n_in:(i+1)*self.n_in,i*self.n_in:(i+1)*self.n_in] * np.repeat(np.cos( np.subtract(np.expand_dims(self.phi,axis=1), np.expand_dims(self.phi,axis=1).T) )[np.newaxis,:,:],self.batch_size,axis=0),axis=(1,2))) for i in range(self.n_loc) ] )
        
        if self.n_loc==1:
            d          = np.i0(kappa_x) * np.i0(kappa_y) / np.i0( np.sqrt(kappa_x ** 2 + kappa_y ** 2 + 2.0 * kappa_x * kappa_y * np.cos(mu_y-mu_x)) )
        else:
            d          = np.nanmean(np.i0(kappa_x) * np.i0(kappa_y) / np.i0( np.sqrt(kappa_x ** 2 + kappa_y ** 2 + 2.0 * kappa_x * kappa_y * np.cos(mu_y-mu_x)) ), axis=0)
        
        P              = d / (d + 1.0)
        return example_input, example_output, C, P 
開發者ID:eminorhan,項目名稱:recurrent-memory,代碼行數:63,代碼來源:generators.py


注:本文中的numpy.i0方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。