當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.hstack方法代碼示例

本文整理匯總了Python中numpy.hstack方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.hstack方法的具體用法?Python numpy.hstack怎麽用?Python numpy.hstack使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.hstack方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_intercept

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def add_intercept(self, X):
        """Add 1's to data as last features."""
        # Data shape
        N, D = X.shape

        # Check if there's not already an intercept column
        if np.any(np.sum(X, axis=0) == N):

            # Report
            print('Intercept is not the last feature. Swapping..')

            # Find which column contains the intercept
            intercept_index = np.argwhere(np.sum(X, axis=0) == N)

            # Swap intercept to last
            X = X[:, np.setdiff1d(np.arange(D), intercept_index)]

        # Add intercept as last column
        X = np.hstack((X, np.ones((N, 1))))

        # Append column of 1's to data, and increment dimensionality
        return X, D+1 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:24,代碼來源:tcpr.py

示例2: test_one_hot

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def test_one_hot():
    """Check if one_hot returns correct label matrices."""
    # Generate label vector
    y = np.hstack((np.ones((10,))*0,
                   np.ones((10,))*1,
                   np.ones((10,))*2))

    # Map to matrix
    Y, labels = one_hot(y)

    # Check for only 0's and 1's
    assert len(np.setdiff1d(np.unique(Y), [0, 1])) == 0

    # Check for correct labels
    assert np.all(labels == np.unique(y))

    # Check correct shape of matrix
    assert Y.shape[0] == y.shape[0]
    assert Y.shape[1] == len(labels) 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:21,代碼來源:test_util.py

示例3: build

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def build(self):
#{{{
        import numpy as np;
        self.W = shared((self.input_dim, 4 * self.output_dim),
                               name='{}_W'.format(self.name))
        self.U = shared((self.output_dim, 4 * self.output_dim),
                                     name='{}_U'.format(self.name))

        self.b = K.variable(np.hstack((np.zeros(self.output_dim),
                                        K.get_value(self.forget_bias_init(
                                                (self.output_dim,))),
                                        np.zeros(self.output_dim),
                                        np.zeros(self.output_dim))),
                                name='{}_b'.format(self.name))
        #self.c_0 = shared((self.output_dim,), name='{}_c_0'.format(self.name)  )
        #self.h_0 = shared((self.output_dim,), name='{}_h_0'.format(self.name)  )
        self.c_0=np.zeros(self.output_dim).astype(theano.config.floatX);
        self.h_0=np.zeros(self.output_dim).astype(theano.config.floatX);
        self.params=[self.W,self.U,
                        self.b,
                    # self.c_0,self.h_0
                    ];
        #}}} 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:25,代碼來源:nn.py

示例4: _get_rois_blob

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def _get_rois_blob(im_rois, im_scale_factors):
    """Converts RoIs into network inputs.
    Arguments:
        im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
        im_scale_factors (list): scale factors as returned by _get_image_blob
    Returns:
        blob (ndarray): R x 5 matrix of RoIs in the image pyramid
    """
    rois_blob_real = []

    for i in range(len(im_scale_factors)):
        rois, levels = _project_im_rois(im_rois, np.array([im_scale_factors[i]]))
        rois_blob = np.hstack((levels, rois))
        rois_blob_real.append(rois_blob.astype(np.float32, copy=False))

    return rois_blob_real 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:18,代碼來源:test.py

示例5: output_shrink

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def output_shrink(K, L):
    """
    shrink the convolution output to half the size.
    used when both the annihilating filter and the uniform samples of sinusoids satisfy
    Hermitian symmetric.
    :param K: the annihilating filter size: K + 1
    :param L: length of the (complex-valued) b vector
    :return:
    """
    out_len = L - K
    if out_len % 2 == 0:
        half_out_len = np.int(out_len / 2.)
        mtx_r = np.hstack((np.eye(half_out_len),
                           np.zeros((half_out_len, half_out_len))))
        mtx_i = mtx_r
    else:
        half_out_len = np.int((out_len + 1) / 2.)
        mtx_r = np.hstack((np.eye(half_out_len),
                           np.zeros((half_out_len, half_out_len - 1))))
        mtx_i = np.hstack((np.eye(half_out_len - 1),
                           np.zeros((half_out_len - 1, half_out_len))))
    return linalg.block_diag(mtx_r, mtx_i) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:24,代碼來源:tools_fri_doa_plane.py

示例6: _N

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def _N(self,s,r):
        """
        Lagrange's interpolate function
        params:
            s,r:natural position of evalue point.2-array.
        returns:
            2x(2x4) shape function matrix.
        """
        la1=(1-s)/2
        la2=(1+s)/2
        lb1=(1-r)/2
        lb2=(1+r)/2
        N1=la1*lb1
        N2=la1*lb2
        N3=la2*lb1
        N4=la2*lb2

        N=np.hstack(N1*np.eye(2),N2*np.eye(2),N3*np.eye(2),N4*np.eye(2))
        return N 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:21,代碼來源:element.py

示例7: wave2input_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def wave2input_image(wave, window, pos=0, pad=0):
    wave_image = np.hstack([wave[pos+i*sride:pos+(i+pad*2)*sride+dif].reshape(height+pad*2, sride) for i in range(256//sride)])[:,:254]
    wave_image *= window
    spectrum_image = np.fft.fft(wave_image, axis=1)
    input_image = np.abs(spectrum_image[:,:128].reshape(1, height+pad*2, 128), dtype=np.float32)

    np.clip(input_image, 1000, None, out=input_image)
    np.log(input_image, out=input_image)
    input_image += bias
    input_image /= scale

    if np.max(input_image) > 0.95:
        print('input image max bigger than 0.95', np.max(input_image))
    if np.min(input_image) < 0.05:
        print('input image min smaller than 0.05', np.min(input_image))

    return input_image 
開發者ID:pstuvwx,項目名稱:Deep_VoiceChanger,代碼行數:19,代碼來源:dataset.py

示例8: backward_process

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def backward_process(self, x, y, W, neuron_output):
        backward_output = []
        layer_num = len(neuron_output)
        score = np.dot(np.hstack((1, neuron_output[layer_num - 2])), W[layer_num - 1])
        error_gradient = np.array([-2 * (y - neuron_output[layer_num - 1][0]) * self.tanh_prime(score)])
        # error_gradient = np.array([np.sum(-2 * (y - score) * np.hstack((1, neuron_output[layer_num-2])))])
        backward_output.insert(0, error_gradient)
        # Hidden layer
        for i in range(layer_num - 2, -1, -1):
            if i == 0:
                score = np.dot(x, W[i])
            else:
                score = np.dot(np.hstack((1, neuron_output[i - 1])), W[i])
            error_gradient = np.dot(error_gradient, W[i + 1][1:].transpose()) * self.tanh_prime(score)
            backward_output.insert(0, error_gradient)
        return backward_output 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:18,代碼來源:NeuralNetwork.py

示例9: make_data_iter_plan

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def make_data_iter_plan(self):
        "make a random data iteration plan"
        # truncate each bucket into multiple of batch-size
        bucket_n_batches = []
        for i in range(len(self.data)):
            bucket_n_batches.append(len(self.data[i]) / self.batch_size)
            self.data[i] = self.data[i][:int(bucket_n_batches[i]*self.batch_size)]

        bucket_plan = np.hstack([np.zeros(n, int)+i for i, n in enumerate(bucket_n_batches)])
        np.random.shuffle(bucket_plan)

        bucket_idx_all = [np.random.permutation(len(x)) for x in self.data]

        self.bucket_plan = bucket_plan
        self.bucket_idx_all = bucket_idx_all
        self.bucket_curr_idx = [0 for x in self.data]

        self.data_buffer = []
        self.label_buffer = []
        for i_bucket in range(len(self.data)):
            data = np.zeros((self.batch_size, self.buckets[i_bucket]))
            label = np.zeros((self.batch_size, self.buckets[i_bucket]))
            self.data_buffer.append(data)
            self.label_buffer.append(label) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:26,代碼來源:sort_io.py

示例10: test_lstm_forget_bias

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def test_lstm_forget_bias():
    forget_bias = 2.0
    stack = gluon.rnn.SequentialRNNCell()
    stack.add(gluon.rnn.LSTMCell(100, i2h_bias_initializer=mx.init.LSTMBias(forget_bias), prefix='l0_'))
    stack.add(gluon.rnn.LSTMCell(100, i2h_bias_initializer=mx.init.LSTMBias(forget_bias), prefix='l1_'))

    dshape = (32, 1, 200)
    data = mx.sym.Variable('data')

    sym, _ = stack.unroll(1, data, merge_outputs=True)
    mod = mx.mod.Module(sym, label_names=None, context=mx.cpu(0))
    mod.bind(data_shapes=[('data', dshape)], label_shapes=None)

    mod.init_params()

    bias_argument = next(x for x in sym.list_arguments() if x.endswith('i2h_bias'))
    expected_bias = np.hstack([np.zeros((100,)),
                               forget_bias * np.ones(100, ), np.zeros((2 * 100,))])
    assert_allclose(mod.get_params()[0][bias_argument].asnumpy(), expected_bias) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_gluon_rnn.py

示例11: test_lstm_forget_bias

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def test_lstm_forget_bias():
    forget_bias = 2.0
    stack = mx.rnn.SequentialRNNCell()
    stack.add(mx.rnn.LSTMCell(100, forget_bias=forget_bias, prefix='l0_'))
    stack.add(mx.rnn.LSTMCell(100, forget_bias=forget_bias, prefix='l1_'))

    dshape = (32, 1, 200)
    data = mx.sym.Variable('data')

    sym, _ = stack.unroll(1, data, merge_outputs=True)
    mod = mx.mod.Module(sym, label_names=None, context=mx.cpu(0))
    mod.bind(data_shapes=[('data', dshape)], label_shapes=None)

    mod.init_params()

    bias_argument = next(x for x in sym.list_arguments() if x.endswith('i2h_bias'))
    expected_bias = np.hstack([np.zeros((100,)),
                               forget_bias * np.ones(100, ), np.zeros((2 * 100,))])
    assert_allclose(mod.get_params()[0][bias_argument].asnumpy(), expected_bias) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_rnn.py

示例12: breastcancer_cont

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def breastcancer_cont(replication=2):
    f = open(path + "breast_cancer_wisconsin_cont.txt", "r")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 9)])
    y_train = np.array(data[:, 9])
    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 9)]])
        y_train = np.hstack([y_train, data[:, 9]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "breast_cancer_wisconsin_cont_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 9)])
    y_test = np.array(data[:, 9])
    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 9)]])
        y_test = np.hstack([y_test, data[:, 9]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:22,代碼來源:datasets.py

示例13: breastcancer_disc

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def breastcancer_disc(replication=2):
    f = open(path + "breast_cancer_wisconsin_disc.txt")
    data = np.loadtxt(f, delimiter=",")
    x_train = data[:, range(1, 10)]
    y_train = data[:, 10]
    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(1, 10)]])
        y_train = np.hstack([y_train, data[:, 10]])

    f = open(path + "breast_cancer_wisconsin_disc_test.txt")
    data = np.loadtxt(f, delimiter=",")
    x_test = data[:, range(1, 10)]
    y_test = data[:, 10]
    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(1, 10)]])
        y_test = np.hstack([y_test, data[:, 10]])

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:20,代碼來源:datasets.py

示例14: iris

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def iris(replication=2):
    f = open(path + "iris.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 4)], dtype=np.float)
    y_train = data[:, 4]

    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 4)]])
        y_train = np.hstack([y_train, data[:, 4]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "iris_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 4)], dtype=np.float)
    y_test = data[:, 4]

    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 4)]])
        y_test = np.hstack([y_test, data[:, 4]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:24,代碼來源:datasets.py

示例15: regression_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hstack [as 別名]
def regression_data():
    f = open(path + "regression_data1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1 = data[:, 1]
    f = open(path + "regression_data2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2 = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2 = data[:, 1]
    x1 = np.vstack((x1, x2))
    y1 = np.hstack((y1, y2))

    f = open(path + "regression_data_test1.txt")
    data = np.loadtxt(f, delimiter=",")
    x1_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y1_test = data[:, 1]
    f = open(path + "regression_data_test2.txt")
    data = np.loadtxt(f, delimiter=",")
    x2_test = np.insert(data[:, 0].reshape(len(data), 1), 0, np.ones(len(data)), axis=1)
    y2_test = data[:, 1]
    x1_test = np.vstack((x1_test, x2_test))
    y1_test = np.hstack((y1_test, y2_test))
    return x1, y1, x1_test, y1_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:25,代碼來源:datasets.py


注:本文中的numpy.hstack方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。