本文整理匯總了Python中numpy.hsplit方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.hsplit方法的具體用法?Python numpy.hsplit怎麽用?Python numpy.hsplit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.hsplit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_diff_stress
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def calculate_diff_stress(self, x, u, nu, side=1):
"""
Calculate the derivative of the Von Mises stress given the densities x,
displacements u, and young modulus nu. Optionally, provide the side
length (default: 1).
"""
rho = self.penalized_densities(x)
EB = self.E(nu).dot(self.B(side))
EBu = sum([EB.dot(u[:, i][self.edofMat]) for i in range(u.shape[1])])
s11, s22, s12 = numpy.hsplit((EBu * rho / float(u.shape[1])).T, 3)
drho = self.diff_penalized_densities(x)
ds11, ds22, ds12 = numpy.hsplit(
((1 - rho) * drho * EBu / float(u.shape[1])).T, 3)
vm_stress = numpy.sqrt(s11**2 - s11 * s22 + s22**2 + 3 * s12**2)
if abs(vm_stress).sum() > 1e-8:
dvm_stress = (0.5 * (1. / vm_stress) * (2 * s11 * ds11 -
ds11 * s22 - s11 * ds22 + 2 * s22 * ds22 + 6 * s12 * ds12))
return dvm_stress
return 0
示例2: MAXPooling
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def MAXPooling(Array,activation=1, ksize=2):
assert len(Array) % ksize == 0
V2list = np.vsplit(Array, len(Array) / ksize)
VerticalElements = list()
HorizontalElements = list()
for x in V2list:
H2list = np.hsplit(x, len(x[0]) / ksize)
HorizontalElements.clear()
for y in H2list:
# y should be a two-two square
HorizontalElements.append(y.max())
VerticalElements.append(np.array(HorizontalElements))
return np.array(np.array(VerticalElements)/activation,dtype=int)
示例3: test_var_rep
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def test_var_rep():
if debug_mode:
if "VAR repr. A" not in to_test: # pragma: no cover
return
print("\n\nVAR REPRESENTATION", end="")
for ds in datasets:
for dt in ds.dt_s_list:
if debug_mode:
print("\n" + dt_s_tup_to_string(dt) + ": ", end="")
exog = (results_sm_exog[ds][dt].exog is not None)
exog_coint = (results_sm_exog_coint[ds][dt].exog_coint is not None)
err_msg = build_err_msg(ds, dt, "VAR repr. A")
obtained = results_sm[ds][dt].var_rep
obtained_exog = results_sm_exog[ds][dt].var_rep
obtained_exog_coint = results_sm_exog_coint[ds][dt].var_rep
p = obtained.shape[0]
desired = np.hsplit(results_ref[ds][dt]["est"]["VAR A"], p)
assert_allclose(obtained, desired, rtol, atol, False, err_msg)
if exog:
assert_equal(obtained_exog, obtained, "WITH EXOG" + err_msg)
if exog_coint:
assert_equal(obtained_exog_coint, obtained, "WITH EXOG_COINT" + err_msg)
示例4: bbox_overlaps
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def bbox_overlaps(bboxes, ref_bboxes):
"""
ref_bboxes: N x 4;
bboxes: K x 4
return: K x N
"""
refx1, refy1, refx2, refy2 = np.vsplit(np.transpose(ref_bboxes), 4)
x1, y1, x2, y2 = np.hsplit(bboxes, 4)
minx = np.maximum(refx1, x1)
miny = np.maximum(refy1, y1)
maxx = np.minimum(refx2, x2)
maxy = np.minimum(refy2, y2)
inter_area = (maxx - minx + 1) * (maxy - miny + 1)
ref_area = (refx2 - refx1 + 1) * (refy2 - refy1 + 1)
area = (x2 - x1 + 1) * (y2 - y1 + 1)
iou = inter_area / (ref_area + area - inter_area)
return iou
示例5: _sample_incidents
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def _sample_incidents(rng, params):
"""Generates new crimeincident occurrences across locations.
Args:
rng: A numpy RandomState() object acting as a random number generator.
params: A Params instance for this environment.
Returns:
incidents_occurred: a list of integers of number of incidents for each
location.
that could be discovered by attention.
reported_incidents: a list of integers of a number of incidents reported
directly.
"""
# pylint: disable=g-complex-comprehension
crimes = [
rng.poisson([
params.incident_rates[i] * params.discovered_incident_weight,
params.incident_rates[i] * params.reported_incident_weight
]) for i in range(params.n_locations)
]
incidents_occurred, reported_incidents = np.hsplit(np.asarray(crimes), 2)
return incidents_occurred.flatten(), reported_incidents.flatten()
示例6: test_joint_space_warp_missing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def test_joint_space_warp_missing(args):
meta, X, _, fixed_vars = args
S = sp.JointSpace(meta)
X_w = S.warp([fixed_vars])
assert X_w.dtype == sp.WARPED_DTYPE
# Test bounds
lower, upper = S.get_bounds().T
assert np.all((lower <= X_w) | np.isnan(X_w))
assert np.all((X_w <= upper) | np.isnan(X_w))
for param, xx in zip(S.param_list, np.hsplit(X_w, S.blocks[:-1])):
xx, = xx
if param in fixed_vars:
x_orig = S.spaces[param].unwarp(xx).item()
S.spaces[param].validate(x_orig)
assert close_enough(x_orig, fixed_vars[param])
# check other direction
x_w2 = S.spaces[param].warp(fixed_vars[param])
assert close_enough(xx, x_w2)
else:
assert np.all(np.isnan(xx))
示例7: test_debug
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def test_debug(self):
image = imageio.imread("./temp/dump.png")
grid_n = 6
img_size = image.shape[1] // grid_n
img_ch = image.shape[-1]
images = np.vsplit(image, grid_n)
images = [np.hsplit(i, grid_n) for i in images]
images = np.reshape(np.array(images), [grid_n*grid_n, img_size, img_size, img_ch])
with tf.Graph().as_default():
with tf.Session() as sess:
v_images_placeholder = tf.placeholder(dtype=tf.float32)
v_images = tf.contrib.gan.eval.preprocess_image(v_images_placeholder)
v_logits = tf.contrib.gan.eval.run_inception(v_images)
v_score = tf.contrib.gan.eval.classifier_score_from_logits(v_logits)
score, logits = sess.run([v_score, v_logits], feed_dict={v_images_placeholder:images})
imageio.imwrite("./temp/inception_logits.png", logits)
示例8: visualize_wave
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def visualize_wave(self, y):
"""Effect that flashes to the beat with scrolling coloured bits"""
if self.current_freq_detects["beat"]:
output = np.zeros((3,config.settings["devices"][self.board]["configuration"]["N_PIXELS"]))
output[0][:]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_flash"])[0]
output[1][:]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_flash"])[1]
output[2][:]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_flash"])[2]
self.wave_wipe_count = config.settings["devices"][self.board]["effect_opts"]["Wave"]["wipe_len"]
else:
output = np.copy(self.prev_output)
#for i in range(len(self.prev_output)):
# output[i] = np.hsplit(self.prev_output[i],2)[0]
output = np.multiply(self.prev_output,config.settings["devices"][self.board]["effect_opts"]["Wave"]["decay"])
for i in range(self.wave_wipe_count):
output[0][i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[0]
output[0][-i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[0]
output[1][i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[1]
output[1][-i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[1]
output[2][i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[2]
output[2][-i]=colour_manager.colour(config.settings["devices"][self.board]["effect_opts"]["Wave"]["color_wave"])[2]
#output = np.concatenate([output,np.fliplr(output)], axis=1)
if self.wave_wipe_count > config.settings["devices"][self.board]["configuration"]["N_PIXELS"]//2:
self.wave_wipe_count = config.settings["devices"][self.board]["configuration"]["N_PIXELS"]//2
self.wave_wipe_count += config.settings["devices"][self.board]["effect_opts"]["Wave"]["wipe_speed"]
return output
示例9: load_digits_and_labels
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def load_digits_and_labels(big_image):
""" Returns all the digits from the 'big' image and creates the corresponding labels for each image"""
# Load the 'big' image containing all the digits:
digits_img = cv2.imread(big_image, 0)
# Get all the digit images from the 'big' image:
number_rows = digits_img.shape[1] / SIZE_IMAGE
rows = np.vsplit(digits_img, digits_img.shape[0] / SIZE_IMAGE)
digits = []
for row in rows:
row_cells = np.hsplit(row, number_rows)
for digit in row_cells:
digits.append(digit)
digits = np.array(digits)
# Create the labels for each image:
labels = np.repeat(np.arange(NUMBER_CLASSES), len(digits) / NUMBER_CLASSES)
return digits, labels
開發者ID:PacktPublishing,項目名稱:Mastering-OpenCV-4-with-Python,代碼行數:22,代碼來源:knn_handwritten_digits_recognition_k_training_testing_preprocessing_hog.py
示例10: load_digits_and_labels
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def load_digits_and_labels(big_image):
"""Returns all the digits from the 'big' image and creates the corresponding labels for each image"""
# Load the 'big' image containing all the digits:
digits_img = cv2.imread(big_image, 0)
# Get all the digit images from the 'big' image:
number_rows = digits_img.shape[1] / SIZE_IMAGE
rows = np.vsplit(digits_img, digits_img.shape[0] / SIZE_IMAGE)
digits = []
for row in rows:
row_cells = np.hsplit(row, number_rows)
for digit in row_cells:
digits.append(digit)
digits = np.array(digits)
# Create the labels for each image:
labels = np.repeat(np.arange(NUMBER_CLASSES), len(digits) / NUMBER_CLASSES)
return digits, labels
開發者ID:PacktPublishing,項目名稱:Mastering-OpenCV-4-with-Python,代碼行數:22,代碼來源:knn_handwritten_digits_recognition_introduction.py
示例11: find_closest_cluster
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def find_closest_cluster(query, ref, min_correlation=-1):
"""
For each collection in query, identifies the collection in ref that is most similar
query and ref are both dictionaries of CellCollections, keyed by a "partition id"
Returns a list containing the best matches for each collection in query that meet the
min_correlation threshold. Each member of the list is itself a list containing the
id of the query collection and the id of its best match in ref
"""
query_centroids, query_ids = compute_centroids(query)
ref_centroids, ref_ids = compute_centroids(ref)
print('number of reference partions %d, number of query partions %d' % (len(ref_ids),len(query_ids)))
all_correlations = np.corrcoef(np.concatenate((ref_centroids, query_centroids), axis=1), rowvar=False)
# At this point, we have the correlations of everything vs everything. We only care about query vs ref
# Extract the top-right corner of the matrix
nref = len(ref)
corr = np.hsplit(np.vsplit(all_correlations, (nref, ))[0], (nref,))[1]
best_match = zip(range(corr.shape[1]), np.argmax(corr, 0))
# At this point, best_match is: 1) using indices into the array rather than ids,
# and 2) not restricted by the threshold. Fix before returning
return ( (query_ids[q], ref_ids[r]) for q, r in best_match if corr[r,q] >= min_correlation )
示例12: openCoordinates
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def openCoordinates(directory, nbInstances, nbImages):
zi = []
zi_strainX = []
zi_strainY = []
testTime = time.time()
coordinatesFile = getData.testReadFile(directory+'/coordinates.csv')
if coordinatesFile is not None:
instanceCoordinates = np.hsplit(coordinatesFile, nbInstances)
for instance in range(nbInstances):
try:
imageCoordinates = np.asarray(np.vsplit(instanceCoordinates[instance], nbImages))
except:
return None, None, None
zi.append(imageCoordinates[:,:,0:100])
zi_strainX.append(imageCoordinates[:,:,100:200])
zi_strainY.append(imageCoordinates[:,:,200:300])
return zi, zi_strainX, zi_strainY
else:
return None, None, None
示例13: trainBlock
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def trainBlock(array,row,col):
arrayShape=array.shape
print(arrayShape)
rowPara=divmod(arrayShape[1],row) #divmod(a,b)方法為除法取整,以及a對b的餘數
colPara=divmod(arrayShape[0],col)
extractArray=array[:colPara[0]*col,:rowPara[0]*row] #移除多餘部分,規範數組,使其正好切分均勻
# print(extractArray.shape)
hsplitArray=np.hsplit(extractArray,rowPara[0])
vsplitArray=flatten_lst([np.vsplit(subArray,colPara[0]) for subArray in hsplitArray])
dataBlock=flatten_lst(vsplitArray)
print("樣本量:%s"%(len(dataBlock))) #此時切分的塊數據量,就為樣本數據量
'''顯示查看其中一個樣本'''
subShow=dataBlock[-10]
print(subShow,'\n',subShow.max(),subShow.std())
fig=plt.figure(figsize=(20, 12))
ax=fig.add_subplot(111)
plt.xticks([x for x in range(subShow.shape[0]) if x%400==0])
plt.yticks([y for y in range(subShow.shape[1]) if y%200==0])
ax.imshow(subShow)
dataBlockStack=np.append(dataBlock[:-1],[dataBlock[-1]],axis=0) #將列表轉換為數組
print(dataBlockStack.shape)
return dataBlockStack
示例14: calculate_principle_stresses
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def calculate_principle_stresses(self, x, u, nu, side=1):
"""
Calculate the principle stresses in the x, y, and shear directions.
"""
rho = self.penalized_densities(x)
EB = self.E(nu).dot(self.B(side))
stress = sum([EB.dot(u[:, i][self.edofMat]) for i in range(u.shape[1])])
stress *= rho / float(u.shape[1])
return numpy.hsplit(stress.T, 3)
示例15: split2d
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hsplit [as 別名]
def split2d(img, cell_size, flatten=True):
h, w = img.shape[:2]
sx, sy = cell_size
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
cells = np.array(cells)
if flatten:
cells = cells.reshape(-1, sy, sx)
return cells