本文整理匯總了Python中numpy.hanning方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.hanning方法的具體用法?Python numpy.hanning怎麽用?Python numpy.hanning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.hanning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: periodic_hann
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def periodic_hann(window_length):
"""Calculate a "periodic" Hann window.
The classic Hann window is defined as a raised cosine that starts and
ends on zero, and where every value appears twice, except the middle
point for an odd-length window. Matlab calls this a "symmetric" window
and np.hanning() returns it. However, for Fourier analysis, this
actually represents just over one cycle of a period N-1 cosine, and
thus is not compactly expressed on a length-N Fourier basis. Instead,
it's better to use a raised cosine that ends just before the final
zero value - i.e. a complete cycle of a period-N cosine. Matlab
calls this a "periodic" window. This routine calculates it.
Args:
window_length: The number of points in the returned window.
Returns:
A 1D np.array containing the periodic hann window.
"""
return 0.5 - (0.5 * np.cos(2 * np.pi / window_length *
np.arange(window_length)))
示例2: test_dft_2d
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def test_dft_2d(self):
"""Test the discrete Fourier transform on 2D data"""
N = 16
da = xr.DataArray(np.random.rand(N,N), dims=['x','y'],
coords={'x':range(N),'y':range(N)}
)
ft = xrft.dft(da, shift=False)
npt.assert_almost_equal(ft.values, np.fft.fftn(da.values))
ft = xrft.dft(da, shift=False, window=True, detrend='constant')
dim = da.dims
window = np.hanning(N) * np.hanning(N)[:, np.newaxis]
da_prime = (da - da.mean(dim=dim)).values
npt.assert_almost_equal(ft.values, np.fft.fftn(da_prime*window))
da = xr.DataArray(np.random.rand(N,N), dims=['x','y'],
coords={'x':range(N,0,-1),'y':range(N,0,-1)}
)
assert (xrft.power_spectrum(da, shift=False,
density=True) >= 0.).all()
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def __init__(self, parallel, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.parallel = parallel
self.window = cp.array([window for _ in range(parallel)])
self.wave_buf = cp.zeros((parallel, wave_len+wave_dif), dtype=float)
self.overwrap_buf = cp.zeros((parallel, wave_dif*buffer_size+(wave_len-wave_dif)), dtype=float)
self.spectrum_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = cp.ones((parallel, self.buffer_size, self.wave_len), dtype=complex)
self.phase = cp.zeros((parallel, self.wave_len), dtype=complex)
self.phase += cp.random.random((parallel, self.wave_len))-0.5 + cp.random.random((parallel, self.wave_len))*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= cp.abs(self.phase)
示例4: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def __init__(self, wave_len=254, wave_dif=64, buffer_size=5, loop_num=5, window=np.hanning(254)):
self.wave_len = wave_len
self.wave_dif = wave_dif
self.buffer_size = buffer_size
self.loop_num = loop_num
self.window = window
self.wave_buf = np.zeros(wave_len+wave_dif, dtype=float)
self.overwrap_buf = np.zeros(wave_dif*buffer_size+(wave_len-wave_dif), dtype=float)
self.spectrum_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.absolute_buffer = np.ones((self.buffer_size, self.wave_len), dtype=complex)
self.phase = np.zeros(self.wave_len, dtype=complex)
self.phase += np.random.random(self.wave_len)-0.5 + np.random.random(self.wave_len)*1j - 0.5j
self.phase[self.phase == 0] = 1
self.phase /= np.abs(self.phase)
示例5: stft_magnitude
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def stft_magnitude(signal, fft_length,
hop_length=None,
window_length=None):
"""Calculate the short-time Fourier transform magnitude.
Args:
signal: 1D np.array of the input time-domain signal.
fft_length: Size of the FFT to apply.
hop_length: Advance (in samples) between each frame passed to FFT.
window_length: Length of each block of samples to pass to FFT.
Returns:
2D np.array where each row contains the magnitudes of the fft_length/2+1
unique values of the FFT for the corresponding frame of input samples.
"""
frames = frame(signal, window_length, hop_length)
# Apply frame window to each frame. We use a periodic Hann (cosine of period
# window_length) instead of the symmetric Hann of np.hanning (period
# window_length-1).
window = periodic_hann(window_length)
windowed_frames = frames * window
return np.abs(np.fft.rfft(windowed_frames, int(fft_length)))
# Mel spectrum constants and functions.
示例6: stft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def stft(data, fft_size=512, step_size=160,padding=True):
# short time fourier transform
if padding == True:
# for 16K sample rate data, 48192-192 = 48000
pad = np.zeros(192,)
data = np.concatenate((data,pad),axis=0)
# padding hanning window 512-400 = 112
window = np.concatenate((np.zeros((56,)),np.hanning(fft_size-112),np.zeros((56,))),axis=0)
win_num = (len(data) - fft_size) // step_size
out = np.ndarray((win_num, fft_size), dtype=data.dtype)
for i in range(win_num):
left = int(i * step_size)
right = int(left + fft_size)
out[i] = data[left: right] * window
F = np.fft.rfft(out, axis=1)
return F
示例7: istft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def istft(F, fft_size=512, step_size=160,padding=True):
# inverse short time fourier transform
data = np.fft.irfft(F, axis=-1)
# padding hanning window 512-400 = 112
window = np.concatenate((np.zeros((56,)),np.hanning(fft_size-112),np.zeros((56,))),axis=0)
number_windows = F.shape[0]
T = np.zeros((number_windows * step_size + fft_size))
for i in range(number_windows):
head = int(i * step_size)
tail = int(head + fft_size)
T[head:tail] = T[head:tail] + data[i, :] * window
if padding == True:
T = T[:48000]
return T
# combine FFT bins to mel frequency bins
示例8: periodic_hann
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def periodic_hann(window_length):
"""Calculate a "periodic" Hann window.
The classic Hann window is defined as a raised cosine that starts and
ends on zero, and where every value appears twice, except the middle
point for an odd-length window. Matlab calls this a "symmetric" window
and np.hanning() returns it. However, for Fourier analysis, this
actually represents just over one cycle of a period N-1 cosine, and
thus is not compactly expressed on a length-N Fourier basis. Instead,
it's better to use a raised cosine that ends just before the final
zero value - i.e. a complete cycle of a period-N cosine. Matlab
calls this a "periodic" window. This routine calculates it.
Args:
window_length: The number of points in the returned window.
Returns:
A 1D np.array containing the periodic hann window.
"""
return 0.5 - (0.5 * np.cos(2 * np.pi / window_length *
np.arange(window_length)))
示例9: stft_magnitude
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def stft_magnitude(signal, fft_length,
hop_length=None,
window_length=None):
"""Calculate the short-time Fourier transform magnitude.
Args:
signal: 1D np.array of the input time-domain signal.
fft_length: Size of the FFT to apply.
hop_length: Advance (in samples) between each frame passed to FFT.
window_length: Length of each block of samples to pass to FFT.
Returns:
2D np.array where each row contains the magnitudes of the fft_length/2+1
unique values of the FFT for the corresponding frame of input samples.
"""
frames = frame(signal, window_length, hop_length)
# Apply frame window to each frame. We use a periodic Hann (cosine of period
# window_length) instead of the symmetric Hann of np.hanning (period
# window_length-1).
window = periodic_hann(window_length)
windowed_frames = frames * window
return np.abs(np.fft.rfft(windowed_frames, int(fft_length)))
# Mel spectrum constants and functions.
示例10: test_high_frequency_completion
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def test_high_frequency_completion(self):
path = dirpath + '/data/test16000.wav'
fs, x = wavfile.read(path)
f0rate = 0.5
shifter = Shifter(fs, f0rate=f0rate)
mod_x = shifter.f0transform(x, completion=False)
mod_xc = shifter.f0transform(x, completion=True)
assert len(mod_x) == len(mod_xc)
N = 512
fl = int(fs * 25 / 1000)
win = np.hanning(fl)
sts = [1000, 5000, 10000, 20000]
for st in sts:
# confirm w/o completion
f_mod_x = fft(mod_x[st: st + fl] / 2**16 * win)
amp_mod_x = 20.0 * np.log10(np.abs(f_mod_x))
# confirm w/ completion
f_mod_xc = fft(mod_xc[st: st + fl] / 2**16 * win)
amp_mod_xc = 20.0 * np.log10(np.abs(f_mod_xc))
assert np.mean(amp_mod_x[N // 4:] < np.mean(amp_mod_xc[N // 4:]))
示例11: test_nonstationary_convmtx
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def test_nonstationary_convmtx(par):
"""Compare nonstationary_convmtx with convmtx for stationary filter
"""
x = np.random.normal(0, 1, par['nt']) + \
par['imag'] * np.random.normal(0, 1, par['nt'])
nh = 7
h = np.hanning(7)
H = convmtx(h, par['nt'])
H = H[:, nh//2:-nh//2+1]
H1 = \
nonstationary_convmtx(np.repeat(h[:, np.newaxis], par['nt'], axis=1).T,
par['nt'], hc=nh//2, pad=(par['nt'], par['nt']))
y = np.dot(H, x)
y1 = np.dot(H1, x)
assert_array_almost_equal(y, y1, decimal=4)
示例12: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def __init__(self, model, PENALTY_K=0.16, WINDOW_INFLUENCE=0.40, LR=0.30, EXEMPLAR_SIZE=127,
INSTANCE_SIZ=287, BASE_SIZE=0, CONTEXT_AMOUNT=0.5,
STRIDE=8, RATIOS=(0.33, 0.5, 1, 2, 3), SCALES=(8,)):
super(SiamRPNTracker, self).__init__()
self.PENALTY_K = PENALTY_K
self.WINDOW_INFLUENCE = WINDOW_INFLUENCE
self.LR = LR
self.EXEMPLAR_SIZE = EXEMPLAR_SIZE
self.INSTANCE_SIZE = INSTANCE_SIZ
self.BASE_SIZE = BASE_SIZE
self.CONTEXT_AMOUNT = CONTEXT_AMOUNT
self.STRIDE = STRIDE
self.RATIOS = list(RATIOS)
self.SCALES = list(SCALES)
self.score_size = (self.INSTANCE_SIZE - self.EXEMPLAR_SIZE) // \
self.STRIDE + 1 + self.BASE_SIZE
self.anchor_num = len(self.RATIOS) * len(self.SCALES)
hanning = np.hanning(self.score_size)
window = np.outer(hanning, hanning)
self.window = np.tile(window.flatten(), self.anchor_num)
self.anchors = self.generate_anchor(self.score_size)
self.model = model
self.channel_average = None
self.size = None
self.center_pos = None
示例13: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax):
'''Log mel feature extractor.
Args:
sample_rate: int
window_size: int
hop_size: int
mel_bins: int
fmin: int, minimum frequency of mel filter banks
fmax: int, maximum frequency of mel filter banks
'''
self.window_size = window_size
self.hop_size = hop_size
self.window_func = np.hanning(window_size)
self.melW = librosa.filters.mel(
sr=sample_rate,
n_fft=window_size,
n_mels=mel_bins,
fmin=fmin,
fmax=fmax).T
'''(n_fft // 2 + 1, mel_bins)'''
示例14: _get_interp_fourier
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def _get_interp_fourier(self, sz):
"""
compute the fourier series of the interpolation function.
"""
f1 = np.arange(-(sz[0]-1) / 2, (sz[0]-1)/2+1, dtype=np.float32)[:, np.newaxis] / sz[0]
interp1_fs = np.real(cubic_spline_fourier(f1, config.interp_bicubic_a) / sz[0])
f2 = np.arange(-(sz[1]-1) / 2, (sz[1]-1)/2+1, dtype=np.float32)[np.newaxis, :] / sz[1]
interp2_fs = np.real(cubic_spline_fourier(f2, config.interp_bicubic_a) / sz[1])
if config.interp_centering:
f1 = np.arange(-(sz[0]-1) / 2, (sz[0]-1)/2+1, dtype=np.float32)[:, np.newaxis]
interp1_fs = interp1_fs * np.exp(-1j*np.pi / sz[0] * f1)
f2 = np.arange(-(sz[1]-1) / 2, (sz[1]-1)/2+1, dtype=np.float32)[np.newaxis, :]
interp2_fs = interp2_fs * np.exp(-1j*np.pi / sz[1] * f2)
if config.interp_windowing:
win1 = np.hanning(sz[0]+2)[:, np.newaxis]
win2 = np.hanning(sz[1]+2)[np.newaxis, :]
interp1_fs = interp1_fs * win1[1:-1]
interp2_fs = interp2_fs * win2[1:-1]
if not config.use_gpu:
return (interp1_fs[:, :, np.newaxis, np.newaxis],
interp2_fs[:, :, np.newaxis, np.newaxis])
else:
return (cp.asarray(interp1_fs[:, :, np.newaxis, np.newaxis]),
cp.asarray(interp2_fs[:, :, np.newaxis, np.newaxis]))
示例15: stft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import hanning [as 別名]
def stft(sig, frame_size, overlap_fac=0.5, window=np.hanning):
""" short time fourier transform of audio signal """
win = window(frame_size)
hop_size = int(frame_size - np.floor(overlap_fac * frame_size))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frame_size / 2.0)), sig)
# cols for windowing
cols = np.ceil((len(samples) - frame_size) / float(hop_size)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frame_size))
frames = stride_tricks.as_strided(
samples,
shape=(cols, frame_size),
strides=(
samples.strides[0] * hop_size,
samples.strides[0]
)
).copy()
frames *= win
return np.fft.rfft(frames)