本文整理匯總了Python中numpy.greater方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.greater方法的具體用法?Python numpy.greater怎麽用?Python numpy.greater使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.greater方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def __init__(self, monitor='val_loss',
min_delta=1e-6, patience=5,mode='min'):
#{{{
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.min_delta = min_delta
self.wait = 0
self.stopped_epoch = 0
self.stop_training=False;
if mode =="min":
self.monitor_op = np.less;
elif mode == "max":
self.monitor_op = np.greater;
else:
assert 0,"unknown early stop mode:";
self.min_delta *= -1
#}}}
示例2: test_greater
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_greater():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Greater", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"greater_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.greater(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例3: test_lesser
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_lesser():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Less", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"lesser_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.less(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例4: test_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_equal():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Equal", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"equal_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.equal(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例5: handle_rolling
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def handle_rolling(agg, granularity, timestamps, values, is_aggregated,
references, window):
if window > len(values):
raise exceptions.UnAggregableTimeseries(
references,
"Rolling window '%d' is greater than serie length '%d'" %
(window, len(values))
)
timestamps = timestamps[window - 1:]
values = values.T
# rigtorp.se/2011/01/01/rolling-statistics-numpy.html
shape = values.shape[:-1] + (values.shape[-1] - window + 1, window)
strides = values.strides + (values.strides[-1],)
new_values = AGG_MAP[agg](as_strided(values, shape=shape, strides=strides),
axis=-1)
if agg.startswith("rate:"):
timestamps = timestamps[1:]
return granularity, timestamps, new_values.T, is_aggregated
示例6: test_datetime_compare_nat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_datetime_compare_nat(self):
dt_nat = np.datetime64('NaT', 'D')
dt_other = np.datetime64('2000-01-01')
td_nat = np.timedelta64('NaT', 'h')
td_other = np.timedelta64(1, 'h')
for op in [np.equal, np.less, np.less_equal,
np.greater, np.greater_equal]:
assert_(not op(dt_nat, dt_nat))
assert_(not op(dt_nat, dt_other))
assert_(not op(dt_other, dt_nat))
assert_(not op(td_nat, td_nat))
assert_(not op(td_nat, td_other))
assert_(not op(td_other, td_nat))
assert_(np.not_equal(dt_nat, dt_nat))
assert_(np.not_equal(dt_nat, dt_other))
assert_(np.not_equal(dt_other, dt_nat))
assert_(np.not_equal(td_nat, td_nat))
assert_(np.not_equal(td_nat, td_other))
assert_(np.not_equal(td_other, td_nat))
示例7: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例8: equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
示例9: not_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def not_equal(x1, x2):
"""
Return (x1 != x2) element-wise.
Unlike `numpy.not_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '!=', True)
示例10: greater_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
示例11: less_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)
示例12: greater
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def greater(x1, x2):
"""
Return (x1 > x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, less
"""
return compare_chararrays(x1, x2, '>', True)
示例13: argmax
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def argmax(self, axis=None, out=None):
"""Return indices of maximum elements along an axis.
Implicit zero elements are also taken into account. If there are
several maximum values, the index of the first occurrence is returned.
Parameters
----------
axis : {-2, -1, 0, 1, None}, optional
Axis along which the argmax is computed. If None (default), index
of the maximum element in the flatten data is returned.
out : None, optional
This argument is in the signature *solely* for NumPy
compatibility reasons. Do not pass in anything except for
the default value, as this argument is not used.
Returns
-------
ind : np.matrix or int
Indices of maximum elements. If matrix, its size along `axis` is 1.
"""
return self._arg_min_or_max(axis, out, np.argmax, np.greater)
示例14: _reset
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode), RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
示例15: test_minmax_func
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import greater [as 別名]
def test_minmax_func(self):
# Tests minimum and maximum.
(x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d
# max doesn't work if shaped
xr = np.ravel(x)
xmr = ravel(xm)
# following are true because of careful selection of data
assert_equal(max(xr), maximum(xmr))
assert_equal(min(xr), minimum(xmr))
assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])
assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])
x = arange(5)
y = arange(5) - 2
x[3] = masked
y[0] = masked
assert_equal(minimum(x, y), where(less(x, y), x, y))
assert_equal(maximum(x, y), where(greater(x, y), x, y))
assert_(minimum(x) == 0)
assert_(maximum(x) == 4)
x = arange(4).reshape(2, 2)
x[-1, -1] = masked
assert_equal(maximum(x), 2)