本文整理匯總了Python中numpy.full_like方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.full_like方法的具體用法?Python numpy.full_like怎麽用?Python numpy.full_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.full_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: as_strided_writeable
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def as_strided_writeable():
arr = np.ones(10)
view = as_strided(arr, writeable=False)
assert_(not view.flags.writeable)
# Check that writeable also is fine:
view = as_strided(arr, writeable=True)
assert_(view.flags.writeable)
view[...] = 3
assert_array_equal(arr, np.full_like(arr, 3))
# Test that things do not break down for readonly:
arr.flags.writeable = False
view = as_strided(arr, writeable=False)
view = as_strided(arr, writeable=True)
assert_(not view.flags.writeable)
示例2: get_C_hat_transpose
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def get_C_hat_transpose():
probs = []
net.eval()
for batch_idx, (data, target) in enumerate(train_gold_deterministic_loader):
# we subtract 10 because we added 10 to gold so we could identify which example is gold in train_phase2
data, target = torch.autograd.Variable(data.cuda(), volatile=True),\
torch.autograd.Variable((target - num_classes).cuda(), volatile=True)
# forward
output = net(data)
pred = F.softmax(output)
probs.extend(list(pred.data.cpu().numpy()))
probs = np.array(probs, dtype=np.float32)
preds = np.argmax(probs, axis=1)
C_hat = np.zeros([num_classes, num_classes])
for i in range(len(train_data_gold.train_labels)):
C_hat[int(np.rint(train_data_gold.train_labels[i] - num_classes)), preds[i]] += 1
C_hat /= (np.sum(C_hat, axis=1, keepdims=True) + 1e-7)
C_hat = C_hat * 0.99 + np.full_like(C_hat, 1/num_classes) * 0.01 # smoothing
return C_hat.T.astype(np.float32)
示例3: decode
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def decode(self, buf, out=None):
# normalise input
enc = ensure_ndarray(buf).view(self.astype)
# flatten to simplify implementation
enc = enc.reshape(-1, order='A')
# setup output
dec = np.full_like(enc, fill_value='', dtype=self.dtype)
# apply decoding
for i, l in enumerate(self.labels):
dec[enc == (i + 1)] = l
# handle output
dec = ndarray_copy(dec, out)
return dec
示例4: _is_feasible
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def _is_feasible(kind, enforce_feasibility, f0):
keyword = kind[0]
if keyword == "equals":
lb = np.asarray(kind[1], dtype=float)
ub = np.asarray(kind[1], dtype=float)
elif keyword == "greater":
lb = np.asarray(kind[1], dtype=float)
ub = np.full_like(lb, np.inf, dtype=float)
elif keyword == "less":
ub = np.asarray(kind[1], dtype=float)
lb = np.full_like(ub, -np.inf, dtype=float)
elif keyword == "interval":
lb = np.asarray(kind[1], dtype=float)
ub = np.asarray(kind[2], dtype=float)
else:
raise RuntimeError("Never be here.")
return ((lb[enforce_feasibility] <= f0[enforce_feasibility]).all()
and (f0[enforce_feasibility] <= ub[enforce_feasibility]).all())
示例5: estimate_mem_use
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def estimate_mem_use(targets, costs):
"""Estimate memory usage in GB, probably not very accurate.
Parameters
----------
targets : numpy array
2D array of targets.
costs : numpy array
2D array of costs.
Returns
-------
est_mem : float
Estimated memory requirement in GB.
"""
# make sure these match the ones used in optimise below
visited = np.zeros_like(targets, dtype=np.int8)
dist = np.full_like(costs, np.nan, dtype=np.float32)
prev = np.full_like(costs, np.nan, dtype=object)
est_mem_arr = [targets, costs, visited, dist, prev]
est_mem = len(pickle.dumps(est_mem_arr, -1))
return est_mem / 1e9
示例6: test_power_transformer_nans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def test_power_transformer_nans(method):
# Make sure lambda estimation is not influenced by NaN values
# and that transform() supports NaN silently
X = np.abs(X_1col)
pt = PowerTransformer(method=method)
pt.fit(X)
lmbda_no_nans = pt.lambdas_[0]
# concat nans at the end and check lambda stays the same
X = np.concatenate([X, np.full_like(X, np.nan)])
X = shuffle(X, random_state=0)
pt.fit(X)
lmbda_nans = pt.lambdas_[0]
assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5)
X_trans = pt.transform(X)
assert_array_equal(np.isnan(X_trans), np.isnan(X))
示例7: windowed_pass_2d
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def windowed_pass_2d(x, win):
"""
The same as windowed pass, but explicitly
iterates over the `value()` return array
and allocates it in the `result`.
This allows 2-dimensional arrays to be returned
from `value()` functions, before we support
the behaviour properly using AST transforms.
This allows for extremely fast iteration
for items such as OLS, and at the same time
calculating t-stats / r^2.
"""
result = np.full_like(x, np.nan)
for i in range(win, x.shape[0]+1):
res = value(x[i-win:i])
for j, j_val in enumerate(res):
result[i-1, j] = j_val
return result
示例8: full_like
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None): # pylint: disable=missing-docstring,redefined-outer-name
"""order, subok and shape arguments mustn't be changed."""
if order != 'K':
raise ValueError('Non-standard orders are not supported.')
if not subok:
raise ValueError('subok being False is not supported.')
if shape:
raise ValueError('Overriding the shape is not supported.')
a = asarray(a).data
dtype = dtype or utils.result_type(a)
fill_value = asarray(fill_value, dtype=dtype)
return arrays_lib.tensor_to_ndarray(
tf.broadcast_to(fill_value.data, tf.shape(a)))
# TODO(wangpeng): investigate whether we can make `copy` default to False.
# TODO(wangpeng): utils.np_doc can't handle np.array because np.array is a
# builtin function. Make utils.np_doc support builtin functions.
示例9: testFullLike
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def testFullLike(self):
# List of 2-tuples of fill value and shape.
data = [
(5, ()),
(5, (7,)),
(5., (7,)),
([5, 8], (2,)),
([5, 8], (3, 2)),
([[5], [8]], (2, 3)),
([[5], [8]], (3, 2, 5)),
([[5.], [8.]], (3, 2, 5)),
]
zeros_builders = [array_ops.zeros, np.zeros]
for f, s in data:
for fn1, fn2, arr_dtype in itertools.product(
self.array_transforms, zeros_builders, self.all_types):
fill_value = fn1(f)
arr = fn2(s, arr_dtype)
self.match(
array_ops.full_like(arr, fill_value), np.full_like(arr, fill_value))
for dtype in self.all_types:
self.match(
array_ops.full_like(arr, fill_value, dtype=dtype),
np.full_like(arr, fill_value, dtype=dtype))
示例10: setLOS
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def setLOS(self, phi, theta):
"""Set the sandbox's LOS vector
:param phi: phi in degree
:type phi: int
:param theta: theta in degree
:type theta: int
"""
if self.reference is not None:
self._log.warning('Cannot change a referenced model!')
return
self._log.debug(
'Changing model LOS to %d phi and %d theta', phi, theta)
self.theta = num.full_like(self.theta, theta*r2d)
self.phi = num.full_like(self.phi, phi*r2d)
self.frame.updateExtent()
self._clearModel()
self.evChanged.notify()
示例11: test_arrays_multi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def test_arrays_multi():
apparent_zenith = np.array([[10, 10], [10, 10]])
apparent_azimuth = np.array([[180, 180], [180, 180]])
# singleaxis should fail for num dim > 1
with pytest.raises(ValueError):
tracking.singleaxis(apparent_zenith, apparent_azimuth,
axis_tilt=0, axis_azimuth=0,
max_angle=90, backtrack=True,
gcr=2.0/7.0)
# uncomment if we ever get singleaxis to support num dim > 1 arrays
# assert isinstance(tracker_data, dict)
# expect = {'tracker_theta': np.full_like(apparent_zenith, 0),
# 'aoi': np.full_like(apparent_zenith, 10),
# 'surface_azimuth': np.full_like(apparent_zenith, 90),
# 'surface_tilt': np.full_like(apparent_zenith, 0)}
# for k, v in expect.items():
# assert_allclose(tracker_data[k], v)
示例12: test_old_wminkowski
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def test_old_wminkowski(self):
with suppress_warnings() as wrn:
wrn.filter(message="`wminkowski` is deprecated")
w = np.array([1.0, 2.0, 0.5])
for x, y in self.cases:
dist1 = old_wminkowski(x, y, p=1, w=w)
assert_almost_equal(dist1, 3.0)
dist1p5 = old_wminkowski(x, y, p=1.5, w=w)
assert_almost_equal(dist1p5, (2.0**1.5+1.0)**(2./3))
dist2 = old_wminkowski(x, y, p=2, w=w)
assert_almost_equal(dist2, np.sqrt(5))
# test weights Issue #7893
arr = np.arange(4)
w = np.full_like(arr, 4)
assert_almost_equal(old_wminkowski(arr, arr + 1, p=2, w=w), 8.0)
assert_almost_equal(wminkowski(arr, arr + 1, p=2, w=w), 4.0)
示例13: _do
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def _do(self, problem, X, **kwargs):
# The input of has the following shape (n_parents, n_matings, n_var)
_, n_matings, n_var = X.shape
# The output owith the shape (n_offsprings, n_matings, n_var)
# Because there the number of parents and offsprings are equal it keeps the shape of X
Y = np.full_like(X, None, dtype=np.object)
# for each mating provided
for k in range(n_matings):
# get the first and the second parent
a, b = X[0, k, 0], X[1, k, 0]
# prepare the offsprings
off_a = ["_"] * problem.n_characters
off_b = ["_"] * problem.n_characters
for i in range(problem.n_characters):
if np.random.random() < 0.5:
off_a[i] = a[i]
off_b[i] = b[i]
else:
off_a[i] = b[i]
off_b[i] = a[i]
# join the character list and set the output
Y[0, k, 0], Y[1, k, 0] = "".join(off_a), "".join(off_b)
return Y
示例14: _assert_array_in_range
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def _assert_array_in_range(array, low, high):
assert isinstance(array, np.ndarray)
assert low < high
np.testing.assert_array_less(np.full_like(array, low), array)
np.testing.assert_array_less(array, np.full_like(array, high))
示例15: zdp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import full_like [as 別名]
def zdp(z_h, z_v):
"""
Reflectivity difference [dB].
From Rinehart (1997), Eqn 10.3
Parameters
----------
z_h : float
Horizontal reflectivity [mm^6/m^3]
z_v : float
Horizontal reflectivity [mm^6/m^3]
Notes
-----
Ensure that both powers have the same units!
Alternating horizontally and linearly polarized pulses are averaged.
"""
zh = np.atleast_1d(z_h)
zv = np.atleast_1d(z_v)
if len(zh) != len(zv):
raise ValueError('Input variables must be same length')
return
zdp = np.full_like(zh, np.nan)
good = np.where(zh > zv)
zdp[good] = 10.* np.log10(zh[good] - zv[good])
return zdp