當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.fromfile方法代碼示例

本文整理匯總了Python中numpy.fromfile方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.fromfile方法的具體用法?Python numpy.fromfile怎麽用?Python numpy.fromfile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.fromfile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: collectdata

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def collectdata(self,):
        print 'Start Collect Data...'

        train_x_path = os.path.join(self.input_dir, 'unlabeled_X.bin')

        train_xf = open(train_x_path, 'rb')
        train_x = np.fromfile(train_xf, dtype=np.uint8)
        train_x = np.reshape(train_x, (-1, 3, 96, 96))
        train_x = np.transpose(train_x, (0, 3, 2, 1))

        idx = 0
        for i in xrange(train_x.shape[0]):
            if not self.skipimg:
                transform_and_save(img_arr=train_x[i], output_filename=os.path.join(self.unlabeldir, str(idx) + '.jpg'))
            self.trainpairlist[os.path.join('images', 'unlabeled', str(idx) + '.jpg')] = 'labels/11.txt'
            idx += 1

        print 'Finished Collect Data...' 
開發者ID:cs-chan,項目名稱:ArtGAN,代碼行數:20,代碼來源:ingest_stl10.py

示例2: load_rf_mapping_stimulus

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def load_rf_mapping_stimulus(session_path, stim_metadata):
    """
    extract frames of rf mapping stimulus

    :param session_path: absolute path of a session, i.e. /mnt/data/Subjects/ZM_1887/2019-07-10/001
    :type session_path: str
    :param stim_metadata: dictionary of stimulus/task metadata
    :type stim_metadata: dict
    :return: stimulus frames
    :rtype: np.ndarray of shape (y_pix, x_pix, n_frames)
    """

    idx_rfm = get_stim_num_from_name(stim_metadata['VISUAL_STIMULI'], 'receptive_field_mapping')

    if idx_rfm is not None:
        stim_filename = stim_metadata['VISUAL_STIM_%i' % idx_rfm].get(
            'stim_data_file_name', '*RFMapStim.raw*')
        stim_file = glob.glob(os.path.join(session_path, 'raw_behavior_data', stim_filename))[0]
        frame_array = np.fromfile(stim_file, dtype='uint8')
        y_pix, x_pix, _ = stim_metadata['VISUAL_STIM_%i' % idx_rfm]['stim_file_shape']
        frames = np.transpose(np.reshape(frame_array, [y_pix, x_pix, -1], order='F'), [2, 1, 0])
    else:
        frames = np.array([])
    return frames 
開發者ID:int-brain-lab,項目名稱:ibllib,代碼行數:26,代碼來源:certification_protocol.py

示例3: parse_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def parse_data(path, dataset, flatten):
    if dataset != 'train' and dataset != 't10k':
        raise NameError('dataset must be train or t10k')

    label_file = os.path.join(path, dataset + '-labels-idx1-ubyte')
    with open(label_file, 'rb') as file:
        _, num = struct.unpack(">II", file.read(8))
        labels = np.fromfile(file, dtype=np.int8)  # int8
        new_labels = np.zeros((num, 10))
        new_labels[np.arange(num), labels] = 1

    img_file = os.path.join(path, dataset + '-images-idx3-ubyte')
    with open(img_file, 'rb') as file:
        _, num, rows, cols = struct.unpack(">IIII", file.read(16))
        imgs = np.fromfile(file, dtype=np.uint8).reshape(num, rows, cols)  # uint8
        imgs = imgs.astype(np.float32) / 255.0
        if flatten:
            imgs = imgs.reshape([num, -1])

    return imgs, new_labels 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:22,代碼來源:utils.py

示例4: _read

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def _read(self, stream, text, byte_order):
        '''
        Read the actual data from a PLY file.

        '''
        if text:
            self._read_txt(stream)
        else:
            if self._have_list:
                # There are list properties, so a simple load is
                # impossible.
                self._read_bin(stream, byte_order)
            else:
                # There are no list properties, so loading the data is
                # much more straightforward.
                self._data = _np.fromfile(stream,
                                          self.dtype(byte_order),
                                          self.count)

        if len(self._data) < self.count:
            k = len(self._data)
            del self._data
            raise PlyParseError("early end-of-file", self, k)

        self._check_sanity() 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:27,代碼來源:plyfile.py

示例5: _fread3_many

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def _fread3_many(fobj, n):
    """Read 3-byte ints from an open binary file object.

    Parameters
    ----------
    fobj : file
        File descriptor

    Returns
    -------
    out : 1D array
        An array of 3 byte int
    """
    b1, b2, b3 = np.fromfile(fobj, ">u1", 3 * n).reshape(-1,
                                                    3).astype(np.int).T
    return (b1 << 16) + (b2 << 8) + b3 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:18,代碼來源:io.py

示例6: test_payload_getitem_setitem

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def test_payload_getitem_setitem(self, item):
        with open(SAMPLE_FILE, 'rb') as fh:
            fh.seek(0xa88)
            header = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010)
            payload = mark4.Mark4Payload.fromfile(fh, header)
        sel_data = payload.data[item]
        assert np.all(payload[item] == sel_data)
        payload2 = mark4.Mark4Payload(payload.words.copy(), header)
        assert payload2 == payload
        payload2[item] = -sel_data
        check = payload.data
        check[item] = -sel_data
        assert np.all(payload2[item] == -sel_data)
        assert np.all(payload2.data == check)
        assert payload2 != payload
        payload2[item] = sel_data
        assert np.all(payload2[item] == sel_data)
        assert payload2 == payload 
開發者ID:mhvk,項目名稱:baseband,代碼行數:20,代碼來源:test_mark4.py

示例7: test_binary_file_reader

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def test_binary_file_reader(self):
        with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh:
            locations = fh.locate_frames()
            assert locations == [0xa88, 0xa88+64*2500]
            fh.seek(0xa88)
            header = mark4.Mark4Header.fromfile(fh, decade=2010, ntrack=64)
            fh.seek(0xa88)
            header2 = fh.read_header()
            current_pos = fh.tell()
            assert header2 == header
            frame_rate = fh.get_frame_rate()
            assert abs(frame_rate
                       - 32 * u.MHz / header.samples_per_frame) < 1 * u.nHz
            assert fh.tell() == current_pos
            repr_fh = repr(fh)

        assert repr_fh.startswith('Mark4FileReader')
        assert 'ntrack=64, decade=2010, ref_time=None' in repr_fh 
開發者ID:mhvk,項目名稱:baseband,代碼行數:20,代碼來源:test_mark4.py

示例8: test_header_times

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def test_header_times(self):
        with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh:
            fh.seek(0xa88)
            header0 = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010)
            start_time = header0.time
            # Use frame size, since header adds to payload.
            samples_per_frame = header0.frame_nbytes * 8 // 2 // 8
            frame_rate = 32. * u.MHz / samples_per_frame
            frame_duration = 1. / frame_rate
            fh.seek(0xa88)
            for frame_nr in range(100):
                try:
                    frame = fh.read_frame()
                except EOFError:
                    break
                header_time = frame.header.time
                expected = start_time + frame_nr * frame_duration
                assert abs(header_time - expected) < 1. * u.ns 
開發者ID:mhvk,項目名稱:baseband,代碼行數:20,代碼來源:test_mark4.py

示例9: test_header

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def test_header(self):
        with open(SAMPLE_32TRACK, 'rb') as fh:
            fh.seek(9656)
            header = mark4.Mark4Header.fromfile(fh, ntrack=32, decade=2010)

        # Try initialising with properties instead of keywords.
        # Here, we let
        # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour,
        #   bcd_minute, bcd_second, bcd_fraction;
        # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id,
        #   fan_out, and magnitude_bit;
        # * nsb defines lsb_output and converter_id.
        header1 = mark4.Mark4Header.fromvalues(
            ntrack=32, samples_per_frame=80000, bps=2, nsb=2, time=header.time,
            system_id=108)
        assert header1 == header 
開發者ID:mhvk,項目名稱:baseband,代碼行數:18,代碼來源:test_mark4.py

示例10: _read_row

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def _read_row(self, row):
        data = np.empty((self.size[1], self.n_image, self.size[0]),
                        self.datatype)

        for i, fid in enumerate(self.files):
            # Find where we need to seek to
            offset = np.dtype(self.datatype).itemsize * \
                (row * self.size[0]) * self.size[1]
            # Seek relative to current position
            fid.seek(offset - fid.tell(), 1)
            # Read
            data[:, i, :] = np.fromfile(fid,
                                        dtype=self.datatype,
                                        count=self.size[0] * self.size[1],
                                        ).reshape(self.size).T

        return data 
開發者ID:ceholden,項目名稱:yatsm,代碼行數:19,代碼來源:stack_line_readers.py

示例11: load_fashion_mnist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def load_fashion_mnist(path, split):
    split = split.lower()
    image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]]

    with open(image_file) as fd:
        images = np.fromfile(file=fd, dtype=np.uint8)
        images = images[16:].reshape(-1, 784).astype(np.float32)
        if split == "train":
            images = images[:55000]
        elif split == "eval":
            images = images[55000:]
    with open(label_file) as fd:
        labels = np.fromfile(file=fd, dtype=np.uint8)
        labels = labels[8:].astype(np.int32)
        if split == "train":
            labels = labels[:55000]
        elif split == "eval":
            labels = labels[55000:]
    return(zip(images, labels)) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:21,代碼來源:writer.py

示例12: load_mnist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def load_mnist(path, split):
    split = split.lower()
    image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]]

    with open(image_file) as fd:
        images = np.fromfile(file=fd, dtype=np.uint8)
        images = images[16:].reshape(-1, 784).astype(np.float32)
        if split == "train":
            images = images[:55000]
        elif split == "eval":
            images = images[55000:]
    with open(label_file) as fd:
        labels = np.fromfile(file=fd, dtype=np.uint8)
        labels = labels[8:].astype(np.int32)
        if split == "train":
            labels = labels[:55000]
        elif split == "eval":
            labels = labels[55000:]
    return(zip(images, labels)) 
開發者ID:naturomics,項目名稱:CapsLayer,代碼行數:21,代碼來源:writer.py

示例13: get_tile

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def get_tile(name):
        """
        Get tile with the given name.

        Check the cache for the tile with the given name. If not found, the
        tile is download.

        Args:
            name(str): The name of the tile.
        """
        dem_file = os.path.join(_get_data_path(), (name + ".dem").upper())
        if not (os.path.exists(dem_file)):
            SRTM30.download_tile(name)
        y = np.fromfile(dem_file, dtype = np.dtype('>i2')).reshape(SRTM30._tile_height,
                                                                   SRTM30._tile_width)
        return y 
開發者ID:atmtools,項目名稱:typhon,代碼行數:18,代碼來源:topography.py

示例14: from_xml

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def from_xml(cls, xmlelement):
        """Loads a Sparse object from an existing file."""

        binaryfp = xmlelement.binaryfp
        nelem = int(xmlelement[0].attrib['nelem'])
        nrows = int(xmlelement.attrib['nrows'])
        ncols = int(xmlelement.attrib['ncols'])

        if binaryfp is None:
            rowindex = np.fromstring(xmlelement[0].text, sep=' ').astype(int)
            colindex = np.fromstring(xmlelement[1].text, sep=' ').astype(int)
            sparsedata = np.fromstring(xmlelement[2].text, sep=' ')
        else:
            rowindex = np.fromfile(binaryfp, dtype='<i4', count=nelem)
            colindex = np.fromfile(binaryfp, dtype='<i4', count=nelem)
            sparsedata = np.fromfile(binaryfp, dtype='<d', count=nelem)

        return cls((sparsedata, (rowindex, colindex)), [nrows, ncols]) 
開發者ID:atmtools,項目名稱:typhon,代碼行數:20,代碼來源:catalogues.py

示例15: Vector

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fromfile [as 別名]
def Vector(elem):
        nelem = int(elem.attrib['nelem'])
        if nelem == 0:
            arr = np.ndarray((0,))
        else:
            # sep=' ' seems to work even when separated by newlines, see
            # http://stackoverflow.com/q/31882167/974555
            if elem.binaryfp is not None:
                arr = np.fromfile(elem.binaryfp, dtype='<d', count=nelem)
            else:
                arr = np.fromstring(elem.text, sep=' ')
            if arr.size != nelem:
                raise RuntimeError(
                    'Expected {:s} elements in Vector, found {:d}'
                    ' elements!'.format(elem.attrib['nelem'],
                                        arr.size))
        return arr 
開發者ID:atmtools,項目名稱:typhon,代碼行數:19,代碼來源:read.py


注:本文中的numpy.fromfile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。