當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.frombuffer方法代碼示例

本文整理匯總了Python中numpy.frombuffer方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.frombuffer方法的具體用法?Python numpy.frombuffer怎麽用?Python numpy.frombuffer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.frombuffer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_mnist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def create_mnist(tfrecord_dir, mnist_dir):
    print('Loading MNIST from "%s"' % mnist_dir)
    import gzip
    with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
        images = np.frombuffer(file.read(), np.uint8, offset=16)
    with gzip.open(os.path.join(mnist_dir, 'train-labels-idx1-ubyte.gz'), 'rb') as file:
        labels = np.frombuffer(file.read(), np.uint8, offset=8)
    images = images.reshape(-1, 1, 28, 28)
    images = np.pad(images, [(0,0), (0,0), (2,2), (2,2)], 'constant', constant_values=0)
    assert images.shape == (60000, 1, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (60000,) and labels.dtype == np.uint8
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 9
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0
    
    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:25,代碼來源:dataset_tool.py

示例2: create_mnistrgb

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def create_mnistrgb(tfrecord_dir, mnist_dir, num_images=1000000, random_seed=123):
    print('Loading MNIST from "%s"' % mnist_dir)
    import gzip
    with gzip.open(os.path.join(mnist_dir, 'train-images-idx3-ubyte.gz'), 'rb') as file:
        images = np.frombuffer(file.read(), np.uint8, offset=16)
    images = images.reshape(-1, 28, 28)
    images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
    assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
    assert np.min(images) == 0 and np.max(images) == 255
    
    with TFRecordExporter(tfrecord_dir, num_images) as tfr:
        rnd = np.random.RandomState(random_seed)
        for idx in range(num_images):
            tfr.add_image(images[rnd.randint(images.shape[0], size=3)])

#---------------------------------------------------------------------------- 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:18,代碼來源:dataset_tool.py

示例3: ctypes2numpy_shared

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def ctypes2numpy_shared(cptr, shape):
    """Convert a ctypes pointer to a numpy array.

    The resulting NumPy array shares the memory with the pointer.

    Parameters
    ----------
    cptr : ctypes.POINTER(mx_float)
        pointer to the memory region

    shape : tuple
        Shape of target `NDArray`.

    Returns
    -------
    out : numpy_array
        A numpy array : numpy array.
    """
    if not isinstance(cptr, ctypes.POINTER(mx_float)):
        raise RuntimeError('expected float pointer')
    size = 1
    for s in shape:
        size *= s
    dbuffer = (mx_float * size).from_address(ctypes.addressof(cptr.contents))
    return np.frombuffer(dbuffer, dtype=np.float32).reshape(shape) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:base.py

示例4: _get_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def _get_data(self):
        if self._train:
            data, label = self._train_data, self._train_label
        else:
            data, label = self._test_data, self._test_label

        namespace = 'gluon/dataset/'+self._namespace
        data_file = download(_get_repo_file_url(namespace, data[0]),
                             path=self._root,
                             sha1_hash=data[1])
        label_file = download(_get_repo_file_url(namespace, label[0]),
                              path=self._root,
                              sha1_hash=label[1])

        with gzip.open(label_file, 'rb') as fin:
            struct.unpack(">II", fin.read(8))
            label = np.frombuffer(fin.read(), dtype=np.uint8).astype(np.int32)

        with gzip.open(data_file, 'rb') as fin:
            struct.unpack(">IIII", fin.read(16))
            data = np.frombuffer(fin.read(), dtype=np.uint8)
            data = data.reshape(len(label), 28, 28, 1)

        self._data = nd.array(data, dtype=data.dtype)
        self._label = label 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:datasets.py

示例5: _extract_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def _extract_images(filename, num_images):
  """Extract the images into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  print('Extracting images from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(
        _IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
  return data 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:download_and_convert_mnist.py

示例6: _extract_labels

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def _extract_labels(filename, num_labels):
  """Extract the labels into a vector of int64 label IDs.

  Args:
    filename: The path to an MNIST labels file.
    num_labels: The number of labels in the file.

  Returns:
    A numpy array of shape [number_of_labels]
  """
  print('Extracting labels from: ', filename)
  with gzip.open(filename) as bytestream:
    bytestream.read(8)
    buf = bytestream.read(1 * num_labels)
    labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
  return labels 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:download_and_convert_mnist.py

示例7: extract_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting', filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data 
開發者ID:robb-brown,項目名稱:IntroToDeepLearning,代碼行數:18,代碼來源:input_data.py

示例8: msgpackext_decode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def msgpackext_decode(obj: Any) -> Any:
    """
    Decodes a msgpack objects from a dictionary representation.

    Parameters
    ----------
    obj : Any
        An encoded object, likely a dictionary.

    Returns
    -------
    Any
        The decoded form of the object.
    """

    if b"_nd_" in obj:
        arr = np.frombuffer(obj[b"data"], dtype=obj[b"dtype"])
        if b"shape" in obj:
            arr.shape = obj[b"shape"]

        return arr

    return obj 
開發者ID:MolSSI,項目名稱:QCElemental,代碼行數:25,代碼來源:serialization.py

示例9: _extract_mnist_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def _extract_mnist_images(filename, num_images):
  """Extract images from an MNIST file into a numpy array.

  Args:
    filename: The path to an MNIST images file.
    num_images: The number of images in the file.

  Returns:
    A numpy array of shape [number_of_images, height, width, channels].
  """
  with gzip.open(filename) as bytestream:
    bytestream.read(16)
    buf = bytestream.read(_MNIST_IMAGE_SIZE * _MNIST_IMAGE_SIZE * num_images)
    data = np.frombuffer(buf, dtype=np.uint8)
    data = data.reshape(num_images, _MNIST_IMAGE_SIZE, _MNIST_IMAGE_SIZE, 1)
  return data 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:mnist.py

示例10: unserialize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def unserialize(cls, data, block_size, back_window):
        uncompressed = lz4.block.decompress(data)
        nb_points = (
            len(uncompressed) // cls._SERIALIZATION_TIMESTAMP_VALUE_LEN
        )

        try:
            timestamps = numpy.frombuffer(uncompressed, dtype='<Q',
                                          count=nb_points)
            values = numpy.frombuffer(
                uncompressed, dtype='<d',
                offset=nb_points * cls._SERIALIZATION_TIMESTAMP_LEN)
        except ValueError:
            raise InvalidData

        return cls.from_data(
            numpy.cumsum(timestamps),
            values,
            block_size=block_size,
            back_window=back_window) 
開發者ID:gnocchixyz,項目名稱:gnocchi,代碼行數:22,代碼來源:carbonara.py

示例11: extract_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def extract_images(filename):
  """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
  print('Extracting %s' % filename)
  with gzip.open(filename) as bytestream:
    magic = _read32(bytestream)
    if magic != 2051:
      raise ValueError(
          'Invalid magic number %d in MNIST image file: %s' %
          (magic, filename))
    num_images = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows * cols * num_images)
    data = numpy.frombuffer(buf, dtype=numpy.uint8)
    data = data.reshape(num_images, rows, cols, 1)
    return data 
開發者ID:sassoftware,項目名稱:python-esppy,代碼行數:18,代碼來源:mnist_input_data.py

示例12: extract_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def extract_images(filename):
    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
    with gzip.open(filename) as bytestream:
        magic = _read32(bytestream)
        if magic != 2051:
            raise ValueError(
                'Invalid magic number %d in MNIST image file: %s' %
                (magic, filename))
        num_images = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * num_images)
        data = numpy.frombuffer(buf, dtype=numpy.uint8)
        data = data.reshape(num_images, rows, cols, 1)
        data = data.astype('float32') / 255.0
        return data 
開發者ID:tensorpack,項目名稱:dataflow,代碼行數:18,代碼來源:mnist.py

示例13: set_shared_params

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def set_shared_params(a, b):
    """Set shared params (and persistent values) to a link.

    Args:
      a (chainer.Link): link whose params are to be replaced
      b (dict): dict that consists of (param_name, multiprocessing.Array)
    """
    assert isinstance(a, chainer.Link)
    remaining_keys = set(b.keys())
    for param_name, param in a.namedparams():
        if param_name in b:
            shared_param = b[param_name]
            param.array = np.frombuffer(
                shared_param, dtype=param.dtype).reshape(param.shape)
            remaining_keys.remove(param_name)
    for persistent_name, _ in chainerrl.misc.namedpersistent(a):
        if persistent_name in b:
            _set_persistent_values_recursively(
                a, persistent_name, b[persistent_name])
            remaining_keys.remove(persistent_name)
    assert not remaining_keys 
開發者ID:chainer,項目名稱:chainerrl,代碼行數:23,代碼來源:async_.py

示例14: bytesToArray

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def bytesToArray(data, dt, shape):
    #print(f"bytesToArray({len(data)}, {dt}, {shape}")
    nelements = getNumElements(shape)
    if not isVlen(dt):
        # regular numpy from string
        arr = np.frombuffer(data, dtype=dt)
    else:
        arr = np.zeros((nelements,), dtype=dt)
        offset = 0
        for index in range(nelements):
            offset = readElement(data, offset, arr, index, dt)
    arr = arr.reshape(shape)
    # check that we can update the array if needed
    # Note: this seems to have been required starting with numpuy v 1.17
    # Setting the flag directly is not recommended. cf: https://github.com/numpy/numpy/issues/9440

    if not arr.flags['WRITEABLE']:
        arr_copy = arr.copy()
        arr = arr_copy

    return arr 
開發者ID:HDFGroup,項目名稱:hsds,代碼行數:23,代碼來源:arrayUtil.py

示例15: read_vec_int

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import frombuffer [as 別名]
def read_vec_int(file_or_fd):
  """ [int-vec] = read_vec_int(file_or_fd)
   Read kaldi integer vector, ascii or binary input,
  """
  fd = open_or_fd(file_or_fd)
  binary = fd.read(2).decode()
  if binary == '\0B': # binary flag
    assert(fd.read(1).decode() == '\4'); # int-size
    vec_size = np.frombuffer(fd.read(4), dtype='int32', count=1)[0] # vector dim
    # Elements from int32 vector are sored in tuples: (sizeof(int32), value),
    vec = np.frombuffer(fd.read(vec_size*5), dtype=[('size','int8'),('value','int32')], count=vec_size)
    assert(vec[0]['size'] == 4) # int32 size,
    ans = vec[:]['value'] # values are in 2nd column,
  else: # ascii,
    arr = (binary + fd.readline().decode()).strip().split()
    try:
      arr.remove('['); arr.remove(']') # optionally
    except ValueError:
      pass
    ans = np.array(arr, dtype=int)
  if fd is not file_or_fd : fd.close() # cleanup
  return ans

# Writing, 
開發者ID:jefflai108,項目名稱:Attentive-Filtering-Network,代碼行數:26,代碼來源:kaldi_io.py


注:本文中的numpy.frombuffer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。