本文整理匯總了Python中numpy.fmin方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.fmin方法的具體用法?Python numpy.fmin怎麽用?Python numpy.fmin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.fmin方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_corr_significance
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def compute_corr_significance(r, N):
""" Compute statistical significance for a pearson correlation between
two xarray objects.
Parameters
----------
r : `xarray.DataArray` object
correlation coefficient between two time series.
N : int
length of time series being correlated.
Returns
-------
pval : float
p value for pearson correlation.
"""
df = N - 2
t_squared = r ** 2 * (df / ((1.0 - r) * (1.0 + r)))
# method used in scipy, where `np.fmin` constrains values to be
# below 1 due to errors in floating point arithmetic.
pval = special.betainc(0.5 * df, 0.5, np.fmin(df / (df + t_squared), 1.0))
return xr.DataArray(pval, coords=t_squared.coords, dims=t_squared.dims)
示例2: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例3: test_reduce
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmin.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 1)
assert_equal(func(tmp2), 1)
示例4: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例5: optimize_transformation
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def optimize_transformation(self):
"""
returns optimal transformation
"""
x0 = [1.0, 0, 0, 0, 1.0, 0, 0, 0, 1.0]
self._add_params_trafo_stack_(x0)
print("starts optimizing...")
np.fmin(self._calc_min_func_, x0, full_output=1, maxiter=2000)
# self.alpha1=self.multiplier_x*self.alpha1
# self.beta1=self.multiplier_x*self.beta1
# self.gamma1=self.multiplier_x*self.gamma1
# self.alpha2=self.multiplier_y*self.alpha2
# self.beta2=self.multiplier_y*self.beta2
# self.gamma2=self.multiplier_y*self.gamma2
self._set_transformation_to_all_axis_()
# self._calc_bounding_box_()
# self._trafo_to_paper_()
示例6: predict_movement
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def predict_movement(self, data, epsilon):
rand_val = np.random.random(data.shape[0])
# q_actions = self.model.predict(data)
p_actions = self.model_policy.predict(data)
opt_policy_orig = np.argmax(np.abs(p_actions), axis=-1)
opt_policy = 1.0 * opt_policy_orig
opt_policy[rand_val < epsilon] = np.random.randint(0, self.action_size, size=(np.sum(rand_val < epsilon)))
# store the qvalue_evolution (lots of computation time maybe here)
tmp = np.zeros((data.shape[0], self.action_size))
tmp[np.arange(data.shape[0]), opt_policy_orig] = 1.0
q_actions0 = self.model_Q.predict([data, tmp])
q_actions2 = self.model_Q2.predict([data, tmp])
q_actions = np.fmin(q_actions0, q_actions2).reshape(-1)
self.qvalue_evolution = np.concatenate((self.qvalue_evolution, q_actions))
# above is not mandatory for predicting a movement so, might need to be moved somewhere else...
opt_policy = opt_policy.astype(np.int)
return opt_policy, p_actions[:, opt_policy]
示例7: _fof_local
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def _fof_local(layout, pos, boxsize, ll, comm):
from kdcount import cluster
N = len(pos)
pos = layout.exchange(pos)
if boxsize is not None:
pos %= boxsize
data = cluster.dataset(pos, boxsize=boxsize)
fof = cluster.fof(data, linking_length=ll, np=0)
labels = fof.labels
del fof
PID = numpy.arange(N, dtype='intp')
PID += numpy.sum(comm.allgather(N)[:comm.rank], dtype='intp')
PID = layout.exchange(PID)
# initialize global labels
minid = equiv_class(labels, PID, op=numpy.fmin)[labels]
return minid
示例8: test_reduce_complex
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_reduce_complex(self):
assert_equal(np.fmin.reduce([1, 2j]), 2j)
assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
示例9: test_float_nans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmin(arg1, arg2), out)
示例10: MTS_LS3v1
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def MTS_LS3v1(Xk, Xk_fit, Xb, Xb_fit, improve, SR, task, phi=3, BONUS1=10, BONUS2=1, rnd=rand, **ukwargs):
r"""Multiple trajectory local search three version one.
Args:
Xk (numpy.ndarray): Current solution.
Xk_fit (float): Current solutions fitness/function value.
Xb (numpy.ndarray): Global best solution.
Xb_fit (float): Global best solutions fitness/function value.
improve (bool): Has the solution been improved.
SR (numpy.ndarray): Search range.
task (Task): Optimization task.
phi (int): Number of new generated positions.
BONUS1 (int): Bonus reward for improving global best solution.
BONUS2 (int): Bonus reward for improving solution.
rnd (mtrand.RandomState): Random number generator.
**ukwargs (Dict[str, Any]): Additional arguments.
Returns:
Tuple[numpy.ndarray, float, numpy.ndarray, float, bool, numpy.ndarray]:
1. New solution.
2. New solutions fitness/function value.
3. Global best if found else old global best.
4. Global bests function/fitness value.
5. If solution has improved.
6. Search range.
"""
grade, Disp = 0.0, task.bRange / 10
while True in (Disp > 1e-3):
Xn = apply_along_axis(task.repair, 1, asarray([rnd.permutation(Xk) + Disp * rnd.uniform(-1, 1, len(Xk)) for _ in range(phi)]), rnd)
Xn_f = apply_along_axis(task.eval, 1, Xn)
iBetter, iBetterBest = argwhere(Xn_f < Xk_fit), argwhere(Xn_f < Xb_fit)
grade += len(iBetterBest) * BONUS1 + (len(iBetter) - len(iBetterBest)) * BONUS2
if len(Xn_f[iBetterBest]) > 0:
ib, improve = argmin(Xn_f[iBetterBest]), True
Xb, Xb_fit, Xk, Xk_fit = Xn[iBetterBest][ib][0].copy(), Xn_f[iBetterBest][ib][0], Xn[iBetterBest][ib][0].copy(), Xn_f[iBetterBest][ib][0]
elif len(Xn_f[iBetter]) > 0:
ib, improve = argmin(Xn_f[iBetter]), True
Xk, Xk_fit = Xn[iBetter][ib][0].copy(), Xn_f[iBetter][ib][0]
Su, Sl = fmin(task.Upper, Xk + 2 * Disp), fmax(task.Lower, Xk - 2 * Disp)
Disp = (Su - Sl) / 10
return Xk, Xk_fit, Xb, Xb_fit, improve, grade, SR
示例11: MutationUros
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def MutationUros(pop, ic, mr, task, rnd=rand):
r"""Mutation method made by Uros Mlakar.
Args:
pop (numpy.ndarray[Individual]): Current population.
ic (int): Index of individual.
mr (float): Mutation rate.
task (Task): Optimization task.
rnd (mtrand.RandomState): Random generator.
Returns:
numpy.ndarray: New genotype.
"""
return fmin(fmax(rnd.normal(pop[ic], mr * task.bRange), task.Lower), task.Upper)
示例12: test_complex_nans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=np.complex)
arg2 = np.array([cnan, 0, cnan], dtype=np.complex)
out = np.array([0, 0, nan], dtype=np.complex)
assert_equal(np.fmin(arg1, arg2), out)
示例13: test_complex_nans
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fmin [as 別名]
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([0, 0, nan], dtype=complex)
assert_equal(np.fmin(arg1, arg2), out)