當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.floor_divide方法代碼示例

本文整理匯總了Python中numpy.floor_divide方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.floor_divide方法的具體用法?Python numpy.floor_divide怎麽用?Python numpy.floor_divide使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.floor_divide方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: w

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def w(w_max, w_min, step):
    linspace_lower = (np.floor_divide(w_min, step)+1)*step
    N = np.floor_divide(w_max-w_min, step)
    linspace_upper = linspace_lower + N*step
    w = np.linspace(linspace_lower, linspace_upper, int(N)+1)
    
    if not np.isclose(w[0], w_min, atol=step/5.):
        w = np.concatenate((np.array([w_min]), w))
        
    if not np.isclose(w[-1], w_max, atol=step/5.):
        w = np.concatenate((w,np.array([w_max])))
    
    return w, len(w)

# Compute dielectric function using Lorentzian model.
# Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless. 
開發者ID:polyanskiy,項目名稱:refractiveindex.info-scripts,代碼行數:18,代碼來源:Kaiser 1962 - CaF2.py

示例2: w

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def w(w_max, w_min, step):
    linspace_lower = (np.floor_divide(w_min, step)+1)*step
    N = np.floor_divide(w_max-w_min, step)
    linspace_upper = linspace_lower + N*step
    w = np.linspace(linspace_lower, linspace_upper, int(N)+1)
    
    if not np.isclose(w[0], w_min, atol=step/5.):
        w = np.concatenate((np.array([w_min]), w))
        
    if not np.isclose(w[-1], w_max, atol=step/5.):
        w = np.concatenate((w,np.array([w_max])))
    
    return w, len(w)

# Compute dielectric function using Brendel-Bormann (aka Gaussian or Gaussian-convoluted Drude–Lorentz) model.
# Units of w and ResFreq must match and must be directly proportional to angular frequency. All other parameters are unitless. 
開發者ID:polyanskiy,項目名稱:refractiveindex.info-scripts,代碼行數:18,代碼來源:Tsuda 2018 - PMMA (BB model).py

示例3: test_NotImplemented_not_returned

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod,
            np.greater, np.greater_equal, np.less, np.less_equal,
            np.equal, np.not_equal]

        a = np.array('1')
        b = 1
        c = np.array([1., 2.])
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b)
            assert_raises(TypeError, f, c, a) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_ufunc.py

示例4: test_NotImplemented_not_returned

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_NotImplemented_not_returned(self):
        # See gh-5964 and gh-2091. Some of these functions are not operator
        # related and were fixed for other reasons in the past.
        binary_funcs = [
            np.power, np.add, np.subtract, np.multiply, np.divide,
            np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
            np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
            np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
            np.logical_and, np.logical_or, np.logical_xor, np.maximum,
            np.minimum, np.mod
            ]

        # These functions still return NotImplemented. Will be fixed in
        # future.
        # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

        a = np.array('1')
        b = 1
        for f in binary_funcs:
            assert_raises(TypeError, f, a, b) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:22,代碼來源:test_ufunc.py

示例5: test_remainder_basic

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_remainder_basic(self):
        dt = np.typecodes['AllInteger'] + np.typecodes['Float']
        for dt1, dt2 in itertools.product(dt, dt):
            for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
                if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
                    continue
                if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
                    continue
                fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
                msg = fmt % (dt1, dt2, sg1, sg2)
                a = np.array(sg1*71, dtype=dt1)
                b = np.array(sg2*19, dtype=dt2)
                div = np.floor_divide(a, b)
                rem = np.remainder(a, b)
                assert_equal(div*b + rem, a, err_msg=msg)
                if sg2 == -1:
                    assert_(b < rem <= 0, msg)
                else:
                    assert_(b > rem >= 0, msg) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:21,代碼來源:test_umath.py

示例6: test_float_remainder_exact

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_float_remainder_exact(self):
        # test that float results are exact for small integers. This also
        # holds for the same integers scaled by powers of two.
        nlst = list(range(-127, 0))
        plst = list(range(1, 128))
        dividend = nlst + [0] + plst
        divisor = nlst + plst
        arg = list(itertools.product(dividend, divisor))
        tgt = list(divmod(*t) for t in arg)

        a, b = np.array(arg, dtype=int).T
        # convert exact integer results from Python to float so that
        # signed zero can be used, it is checked.
        tgtdiv, tgtrem = np.array(tgt, dtype=float).T
        tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
        tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)

        for dt in np.typecodes['Float']:
            msg = 'dtype: %s' % (dt,)
            fa = a.astype(dt)
            fb = b.astype(dt)
            div = np.floor_divide(fa, fb)
            rem = np.remainder(fa, fb)
            assert_equal(div, tgtdiv, err_msg=msg)
            assert_equal(rem, tgtrem, err_msg=msg) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:27,代碼來源:test_umath.py

示例7: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def __init__(self, roi_center=None, roi_size=None, roi_start=None, roi_end=None):
        """
        Args:
            roi_center (list or tuple): voxel coordinates for center of the crop ROI.
            roi_size (list or tuple): size of the crop ROI.
            roi_start (list or tuple): voxel coordinates for start of the crop ROI.
            roi_end (list or tuple): voxel coordinates for end of the crop ROI.
        """
        if roi_center is not None and roi_size is not None:
            roi_center = np.asarray(roi_center, dtype=np.uint16)
            roi_size = np.asarray(roi_size, dtype=np.uint16)
            self.roi_start = np.subtract(roi_center, np.floor_divide(roi_size, 2))
            self.roi_end = np.add(self.roi_start, roi_size)
        else:
            assert roi_start is not None and roi_end is not None, "roi_start and roi_end must be provided."
            self.roi_start = np.asarray(roi_start, dtype=np.uint16)
            self.roi_end = np.asarray(roi_end, dtype=np.uint16)

        assert np.all(self.roi_start >= 0), "all elements of roi_start must be greater than or equal to 0."
        assert np.all(self.roi_end > 0), "all elements of roi_end must be positive."
        assert np.all(self.roi_end >= self.roi_start), "invalid roi range." 
開發者ID:Project-MONAI,項目名稱:MONAI,代碼行數:23,代碼來源:array.py

示例8: testFloatBasic

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def testFloatBasic(self):
    x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32)
    y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32)
    self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True)
    self._compareBoth(x, y, np.subtract, tf.sub)
    self._compareBoth(x, y, np.multiply, tf.mul)
    self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv)
    self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv)
    self._compareBoth(x, y, np.add, _ADD)
    self._compareBoth(x, y, np.subtract, _SUB)
    self._compareBoth(x, y, np.multiply, _MUL)
    self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV)
    self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV)
    try:
      from scipy import special  # pylint: disable=g-import-not-at-top
      a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32)
      x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32)
      self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma)
      self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac)
      # Need x > 1
      self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta)
      n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32)
      self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma)
    except ImportError as e:
      tf.logging.warn("Cannot test special functions: %s" % str(e)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:27,代碼來源:cwise_ops_test.py

示例9: testDoubleBasic

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def testDoubleBasic(self):
    x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64)
    y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64)
    self._compareBoth(x, y, np.add, tf.add)
    self._compareBoth(x, y, np.subtract, tf.sub)
    self._compareBoth(x, y, np.multiply, tf.mul)
    self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv)
    self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv)
    self._compareBoth(x, y, np.add, _ADD)
    self._compareBoth(x, y, np.subtract, _SUB)
    self._compareBoth(x, y, np.multiply, _MUL)
    self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV)
    self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV)
    try:
      from scipy import special  # pylint: disable=g-import-not-at-top
      a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32)
      x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32)
      self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma)
      self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac)
    except ImportError as e:
      tf.logging.warn("Cannot test special functions: %s" % str(e)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:cwise_ops_test.py

示例10: testInt32Basic

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def testInt32Basic(self):
    x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32)
    y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32)
    self._compareBoth(x, y, np.add, tf.add)
    self._compareBoth(x, y, np.subtract, tf.sub)
    self._compareBoth(x, y, np.multiply, tf.mul)
    self._compareBoth(x, y, np.true_divide, tf.truediv)
    self._compareBoth(x, y, np.floor_divide, tf.floordiv)
    self._compareBoth(x, y, np.mod, tf.mod)
    self._compareBoth(x, y, np.add, _ADD)
    self._compareBoth(x, y, np.subtract, _SUB)
    self._compareBoth(x, y, np.multiply, _MUL)
    self._compareBoth(x, y, np.true_divide, _TRUEDIV)
    self._compareBoth(x, y, np.floor_divide, _FLOORDIV)
    self._compareBoth(x, y, np.mod, _MOD)
    # _compareBoth tests on GPU only for floating point types, so test
    # _MOD for int32 on GPU by calling _compareGpu
    self._compareGpu(x, y, np.mod, _MOD) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:cwise_ops_test.py

示例11: test_csr_from_coo_novals

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_csr_from_coo_novals():
    for i in range(50):
        coords = np.random.choice(np.arange(50 * 100, dtype=np.int32), 1000, False)
        rows = np.mod(coords, 100, dtype=np.int32)
        cols = np.floor_divide(coords, 100, dtype=np.int32)

        csr = lm.CSR.from_coo(rows, cols, None, (100, 50))
        assert csr.nrows == 100
        assert csr.ncols == 50
        assert csr.nnz == 1000

        for i in range(100):
            sp = csr.rowptrs[i]
            ep = csr.rowptrs[i+1]
            assert ep - sp == np.sum(rows == i)
            points, = np.nonzero(rows == i)
            po = np.argsort(cols[points])
            points = points[po]
            assert all(np.sort(csr.colinds[sp:ep]) == cols[points])
            assert np.sum(csr.row(i)) == len(points) 
開發者ID:lenskit,項目名稱:lkpy,代碼行數:22,代碼來源:test_matrix_csr.py

示例12: process_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def process_image(img_id):
    if 'Pan-Sharpen_' in img_id:
        img_id = img_id.split('Pan-Sharpen_')[1]
    img = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'Pan-Sharpen', 'Pan-Sharpen_' + img_id+'.tif'))
    nir = img[:, :, 3:]
    img = img[:, :, :3]
    np.clip(img, None, threshold, out=img)
    img = np.floor_divide(img, threshold / 255).astype('uint8')
    cv2.imwrite(path.join(test_png, img_id + '.png'), img, [cv2.IMWRITE_PNG_COMPRESSION, 9])

    img2 = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'MS', 'MS_' + img_id+'.tif'))
    img2 = np.rollaxis(img2, 0, 3)
    img2 = cv2.resize(img2, (900, 900), interpolation=cv2.INTER_LANCZOS4)
    
    img_0_3_5 = (np.clip(img2[..., [0, 3, 5]], None, (2000, 3000, 3000)) / (np.array([2000, 3000, 3000]) / 255)).astype('uint8')
    cv2.imwrite(path.join(test_png2, img_id + '.png'), img_0_3_5, [cv2.IMWRITE_PNG_COMPRESSION, 9])
    
    pan = io.imread(path.join(test_dir, '_'.join(img_id.split('_')[:4]), 'PAN', 'PAN_' + img_id+'.tif'))
    pan = pan[..., np.newaxis]
    img_pan_6_7 = np.concatenate([pan, img2[..., 7:], nir], axis=2)
    img_pan_6_7 = (np.clip(img_pan_6_7, None, (3000, 5000, 5000)) / (np.array([3000, 5000, 5000]) / 255)).astype('uint8')
    cv2.imwrite(path.join(test_png3, img_id + '.png'), img_pan_6_7, [cv2.IMWRITE_PNG_COMPRESSION, 9]) 
開發者ID:SpaceNetChallenge,項目名稱:SpaceNet_Off_Nadir_Solutions,代碼行數:24,代碼來源:convert_test.py

示例13: median

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def median(self):
        ordered = numpy.lexsort((self._ts['values'], self.indexes))
        # TODO(gordc): can use np.divmod when centos supports numpy 1.13
        mid_diff = numpy.floor_divide(self.counts, 2)
        odd = numpy.mod(self.counts, 2)
        mid_floor = (numpy.cumsum(self.counts) - 1) - mid_diff
        mid_ceil = mid_floor + (odd + 1) % 2
        return make_timeseries(
            self.tstamps, (self._ts['values'][ordered][mid_floor] +
                           self._ts['values'][ordered][mid_ceil]) / 2.0) 
開發者ID:gnocchixyz,項目名稱:gnocchi,代碼行數:12,代碼來源:carbonara.py

示例14: encode_2bit_base

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def encode_2bit_base(values):
    """Generic encoder for data stored using two bits.

    This returns an unsigned integer array containing encoded sample
    values that range from 0 to 3.  The conversion from floating point
    sample value to unsigned int is given below, with
    ``lv = TWO_BIT_1_SIGMA = 2.1745``:

      ================= ======
      Input range       Output
      ================= ======
            value < -lv   0
      -lv < value <  0.   2
       0. < value <  lv   1
       lv < value         3
      ================= ======

    This does not pack the samples into bytes.
    """
    # Optimized for speed by doing calculations in-place, and ensuring that
    # the dtypes match.
    values = np.clip(values, clip_low, clip_high)
    values += two_bit_2_sigma
    bitvalues = np.empty(values.shape, np.uint8)
    return np.floor_divide(values, TWO_BIT_1_SIGMA, out=bitvalues,
                           casting='unsafe') 
開發者ID:mhvk,項目名稱:baseband,代碼行數:28,代碼來源:encoding.py

示例15: test_floor_division_complex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import floor_divide [as 別名]
def test_floor_division_complex(self):
        # check that implementation is correct
        msg = "Complex floor division implementation check"
        x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
        y = np.array([0., -1., 0., 0.], dtype=np.complex128)
        assert_equal(np.floor_divide(x**2, x), y, err_msg=msg)
        # check overflow, underflow
        msg = "Complex floor division overflow/underflow check"
        x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
        y = np.floor_divide(x**2, x)
        assert_equal(y, [1.e+110, 0], err_msg=msg) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:13,代碼來源:test_umath.py


注:本文中的numpy.floor_divide方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。