當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.float64方法代碼示例

本文整理匯總了Python中numpy.float64方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.float64方法的具體用法?Python numpy.float64怎麽用?Python numpy.float64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.float64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: draw_heatmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def draw_heatmap(img, heatmap, alpha=0.5):
    """Draw a heatmap overlay over an image."""
    assert len(heatmap.shape) == 2 or \
        (len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(
            heatmap_rs[..., np.newaxis],
            img.shape[0:2],
            interpolation="nearest"
        )
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:25,代碼來源:common.py

示例2: _convert_dict_to_sparse_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def _convert_dict_to_sparse_matrix(self, feature_rows):
        if len(feature_rows) == 0:
            raise Exception('ERROR: something went wrong, empty features.')
        data, row, col = [], [], []
        for i, feature_row in enumerate(feature_rows):
            if len(feature_row) == 0:
                # case of empty feature set for a specific instance
                row.append(i)
                col.append(0)
                data.append(0)
            else:
                for feature in feature_row:
                    row.append(i)
                    col.append(feature)
                    data.append(feature_row[feature])
        shape = (max(row) + 1, self.feature_size)
        data_matrix = csr_matrix((data, (row, col)),
                                 shape=shape, dtype=np.float64)
        return data_matrix 
開發者ID:fabriziocosta,項目名稱:EDeN,代碼行數:21,代碼來源:graph.py

示例3: _maybe_cast_to_float64

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def _maybe_cast_to_float64(da):
    """Cast DataArrays to np.float64 if they are of type np.float32.

    Parameters
    ----------
    da : xr.DataArray
        Input DataArray

    Returns
    -------
    DataArray

    """
    if da.dtype == np.float32:
        logging.warning('Datapoints were stored using the np.float32 datatype.'
                        'For accurate reduction operations using bottleneck, '
                        'datapoints are being cast to the np.float64 datatype.'
                        ' For more information see: https://github.com/pydata/'
                        'xarray/issues/1346')
        return da.astype(np.float64)
    else:
        return da 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:24,代碼來源:data_loader.py

示例4: read_common_mat

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def read_common_mat(fd):
    """ 
        Read common matrix(for class Matrix in kaldi setup)
        see matrix/kaldi-matrix.cc::
            void Matrix<Real>::Read(std::istream & is, bool binary, bool add)
        Return a numpy ndarray object
    """
    mat_type = read_token(fd)
    print_info(f'\tType of the common matrix: {mat_type}')
    if mat_type not in ["FM", "DM"]:
        raise RuntimeError(f"Unknown matrix type in kaldi: {mat_type}")
    float_size = 4 if mat_type == 'FM' else 8
    float_type = np.float32 if mat_type == 'FM' else np.float64
    num_rows = read_int32(fd)
    num_cols = read_int32(fd)
    print_info(f'\tSize of the common matrix: {num_rows} x {num_cols}')
    mat_data = fd.read(float_size * num_cols * num_rows)
    mat = np.fromstring(mat_data, dtype=float_type)
    return mat.reshape(num_rows, num_cols) 
開發者ID:funcwj,項目名稱:kaldi-python-io,代碼行數:21,代碼來源:_io_kernel.py

示例5: read_float_vec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def read_float_vec(fd, direct_access=False):
    """
        Read float vector(for class Vector in kaldi setup)
        see matrix/kaldi-vector.cc
    """
    if direct_access:
        expect_binary(fd)
    vec_type = read_token(fd)
    print_info(f'\tType of the common vector: {vec_type}')
    if vec_type not in ["FV", "DV"]:
        raise RuntimeError(f"Unknown matrix type in kaldi: {vec_type}")
    float_size = 4 if vec_type == 'FV' else 8
    float_type = np.float32 if vec_type == 'FV' else np.float64
    dim = read_int32(fd)
    print_info(f'\tDim of the common vector: {dim}')
    vec_data = fd.read(float_size * dim)
    return np.fromstring(vec_data, dtype=float_type) 
開發者ID:funcwj,項目名稱:kaldi-python-io,代碼行數:19,代碼來源:_io_kernel.py

示例6: test_ndarray_elementwise

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_ndarray_elementwise():
    np.random.seed(0)
    nrepeat = 10
    maxdim = 4
    all_type = [np.float32, np.float64, np.float16, np.uint8, np.int32]
    real_type = [np.float32, np.float64, np.float16]
    for repeat in range(nrepeat):
        for dim in range(1, maxdim):
            check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type)
            check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type)
            check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0)
            check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0)
            check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:profiler_ndarray.py

示例7: test_random_seed_setting

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_random_seed_setting():
    ctx = mx.context.current_context()
    seed_to_test = 1234
    num_temp_seeds = 25
    probs = [0.125, 0.25, 0.25, 0.0625, 0.125, 0.1875]
    num_samples = 100000
    for dtype in ['float16', 'float32', 'float64']:
        seed = set_seed_variously(1, num_temp_seeds, seed_to_test)
        samples1 = mx.nd.random.multinomial(data=mx.nd.array(probs, ctx=ctx, dtype=dtype),
                                            shape=num_samples)
        seed = set_seed_variously(seed, num_temp_seeds, seed_to_test)
        samples2 = mx.nd.random.multinomial(data=mx.nd.array(probs, ctx=ctx, dtype=dtype),
                                            shape=num_samples)
        samples1np = samples1.asnumpy()
        set_seed_variously(seed, num_temp_seeds, seed_to_test+1)
        samples2np = samples2.asnumpy()
        assert same(samples1np, samples2np), \
            "seed-setting test: `multinomial` should give the same result with the same seed"


# Tests that seed setting of parallel rng is synchronous w.r.t. rng use before and after. 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:test_random.py

示例8: test_normal_generator

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_normal_generator():
    ctx = mx.context.current_context()
    samples = 1000000
    # Default success rate is 0.25, so 2 successes of 8 trials will pass.
    trials = 8
    num_buckets = 5
    for dtype in ['float16', 'float32', 'float64']:
        for mu, sigma in [(0.0, 1.0), (1.0, 5.0)]:
            print("ctx=%s, dtype=%s, Mu=%g, Sigma=%g:" % (ctx, dtype, mu, sigma))
            buckets, probs = gen_buckets_probs_with_ppf(lambda x: ss.norm.ppf(x, mu, sigma), num_buckets)
            # Quantize bucket boundaries to reflect the actual dtype and adjust probs accordingly
            buckets = np.array(buckets, dtype=dtype).tolist()
            probs = [(ss.norm.cdf(buckets[i][1], mu, sigma) -
                      ss.norm.cdf(buckets[i][0], mu, sigma)) for i in range(num_buckets)]
            generator_mx = lambda x: mx.nd.random.normal(mu, sigma, shape=x, ctx=ctx, dtype=dtype).asnumpy()
            verify_generator(generator=generator_mx, buckets=buckets, probs=probs,
                             nsamples=samples, nrepeat=trials)
            generator_mx_same_seed =\
                lambda x: np.concatenate(
                    [mx.nd.random.normal(mu, sigma, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy()
                     for _ in range(10)])
            verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs,
                             nsamples=samples, nrepeat=trials) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:25,代碼來源:test_random.py

示例9: test_uniform_generator

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_uniform_generator():
    ctx = mx.context.current_context()
    for dtype in ['float16', 'float32', 'float64']:
        for low, high in [(-1.0, 1.0), (1.0, 3.0)]:
            print("ctx=%s, dtype=%s, Low=%g, High=%g:" % (ctx, dtype, low, high))
            scale = high - low
            buckets, probs = gen_buckets_probs_with_ppf(lambda x: ss.uniform.ppf(x, loc=low, scale=scale), 5)
            # Quantize bucket boundaries to reflect the actual dtype and adjust probs accordingly
            buckets = np.array(buckets, dtype=dtype).tolist()
            probs = [(buckets[i][1] - buckets[i][0])/scale for i in range(5)]
            generator_mx = lambda x: mx.nd.random.uniform(low, high, shape=x, ctx=ctx, dtype=dtype).asnumpy()
            verify_generator(generator=generator_mx, buckets=buckets, probs=probs)
            generator_mx_same_seed = \
                lambda x: np.concatenate(
                    [mx.nd.random.uniform(low, high, shape=x // 10, ctx=ctx, dtype=dtype).asnumpy()
                     for _ in range(10)])
            verify_generator(generator=generator_mx_same_seed, buckets=buckets, probs=probs) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:test_random.py

示例10: test_infer_multiout_op2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_infer_multiout_op2():
    def test_func(a):
        q, l = mx.nd.linalg.gelqf(a)
        return mx.nd.sum(l)

    data32 = mx.nd.random.normal(shape=(2, 3), ctx=mx.cpu(), dtype=np.float32)
    data32.attach_grad()
    with autograd.record():
        test32 = test_func(data32)
        test32.backward()

    data64 = mx.nd.Cast(data32, dtype=np.float64)
    data64.attach_grad()
    with autograd.record():
        test64 = test_func(data64)
        test64.backward()
    assert_almost_equal(data64.grad.asnumpy(), data32.grad.asnumpy(), atol=1e-5, rtol=1e-5) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:test_infer_type.py

示例11: test_deconvolution_large_c

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_deconvolution_large_c():
    problematic_c = 64 * 1024
    # The deconvolution accumulates many values, so set large tolerances.
    tol = {np.dtype(np.float32): 1,
           np.dtype(np.float64): 1}
    def test_1D_with_width(width, grad_req):
        ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float32}},
                    {'ctx': mx.gpu(0), 'deconv_data': (1, 8, width), 'type_dict': {'deconv_data': np.float64}}]
        sym = mx.sym.Deconvolution(layout='NCW', num_filter=problematic_c, kernel=(2,), name='deconv')
        check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)

    def test_2D_with_width(width, grad_req):
        ctx_list = [{'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float32}},
                    {'ctx': mx.gpu(0), 'deconv_data': (1, 8, 2, width), 'type_dict': {'deconv_data': np.float64}}]
        sym = mx.sym.Deconvolution(layout='NCHW', num_filter=problematic_c, kernel=(2,2), name='deconv')
        check_consistency([sym, sym], ctx_list, tol=tol, grad_req=grad_req)

    # Run with different data tensor shapes to run cudnnFind() multiple times.
    # First, populate algo and op caches with models that always use cudnnFind() (req == 'write').
    # Then run models that must avoid cached cudnnFind() results in some cases (req == 'add').
    widths = [4, 16, 64]
    for req in ['write', 'add']:
        for width in widths:
            test_1D_with_width(width, req)
            test_2D_with_width(width, req) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:27,代碼來源:test_operator_gpu.py

示例12: test_bilinear_sampler_with_type

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_bilinear_sampler_with_type():
    data = mx.sym.Variable('data')
    grid = mx.sym.Variable('grid')
    sym = mx.sym.BilinearSampler(data=data, grid=grid)
    ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float64}},
                {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float32}},
                {'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float16}},
                {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float64}},
                {'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'grid': (1, 2, 10, 10),
                 'type_dict': {'data': np.float32}}]
    check_consistency(sym, ctx_list)
    check_consistency(sym, ctx_list, grad_req="add") 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:test_operator_gpu.py

示例13: test_pooling_with_type2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_pooling_with_type2():
    ctx_list = [{'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
                {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}},
                {'ctx': mx.gpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float16}},
                {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float64}},
                {'ctx': mx.cpu(0), 'pool_data': (10, 2, 10, 10), 'type_dict': {'pool_data': np.float32}}]

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), stride=(2,2), pool_type='max')
    check_consistency(sym, ctx_list, rand_type=np.float16)

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='avg')
    check_consistency(sym, ctx_list)

    sym = mx.sym.Pooling(name='pool', kernel=(5,5), pad=(2,2), pool_type='max')
    check_consistency(sym, ctx_list, rand_type=np.float16)

    sym = mx.sym.Pooling(name='pool', kernel=(3,3), pad=(1,1), pool_type='sum')
    check_consistency(sym, ctx_list) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:test_operator_gpu.py

示例14: test_elementwisesum_with_type

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_elementwisesum_with_type():
    dev_types = [[mx.gpu(0), [np.float64, np.float32, np.float16]],
                 [mx.cpu(0), [np.float64, np.float32]] ]
    for num_args in range(1, 6):
        ews_arg_shape = {}
        for i in range(num_args):
            ews_arg_shape['ews_arg'+str(i)] = (2, 10)
        sym = mx.sym.ElementWiseSum(name='ews', num_args=num_args)
        ctx_list = []
        for dev, types in dev_types:
            for dtype in types:
                ews_arg_dtype = {'type_dict':{}}
                for i in range(num_args):
                    ews_arg_dtype['type_dict']['ews_arg'+str(i)] = dtype
                ctx_elem = {'ctx': dev}
                ctx_elem.update(ews_arg_shape)
                ctx_elem.update(ews_arg_dtype)
                ctx_list.append(ctx_elem)
    check_consistency(sym, ctx_list) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_operator_gpu.py

示例15: test_embedding_with_type

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float64 [as 別名]
def test_embedding_with_type():
    def test_embedding_helper(data_types, weight_types, low_pad, high_pad):
        NVD = [[20, 10, 20], [200, 10, 300]]
        for N, V, D in NVD:
            sym = mx.sym.Embedding(name='embedding', input_dim=V, output_dim=D)
            ctx_list = []
            for data_type in data_types:
                for weight_type in weight_types:
                    ctx_list.append({'ctx': mx.gpu(0), 'embedding_data': (N,),
                        'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
                    ctx_list.append({'ctx': mx.cpu(0), 'embedding_data': (N,),
                        'type_dict': {'embedding_data': data_type, 'embedding_weight': weight_type}})
            arg_params = {'embedding_data': np.random.randint(low=-low_pad, high=V+high_pad, size=(N,))}
            check_consistency(sym, ctx_list, grad_req={'embedding_data': 'null','embedding_weight': 'write'},
                              arg_params=arg_params)

    data_types = [np.float16, np.float32, np.float64, np.int32]
    weight_types = [np.float16, np.float32, np.float64]
    test_embedding_helper(data_types, weight_types, 5, 5)
    data_types = [np.uint8]
    weight_types = [np.float16, np.float32, np.float64]
    test_embedding_helper(data_types, weight_types, 0, 5) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:test_operator_gpu.py


注:本文中的numpy.float64方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。