當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.float128方法代碼示例

本文整理匯總了Python中numpy.float128方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.float128方法的具體用法?Python numpy.float128怎麽用?Python numpy.float128使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.float128方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_returned_dtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def test_returned_dtype(self):

        dtypes = [np.int16, np.int32, np.int64, np.float32, np.float64]
        if hasattr(np, 'float128'):
            dtypes.append(np.float128)

        for dtype in dtypes:
            s = Series(range(10), dtype=dtype)
            group_a = ['mean', 'std', 'var', 'skew', 'kurt']
            group_b = ['min', 'max']
            for method in group_a + group_b:
                result = getattr(s, method)()
                if is_integer_dtype(dtype) and method in group_a:
                    assert result.dtype == np.float64
                else:
                    assert result.dtype == dtype 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_nanops.py

示例2: svm_topk_smooth_py_1

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def svm_topk_smooth_py_1(x, y, tau, k):
    x, y = to_numpy(x), to_numpy(y)
    x = x.astype(np.float128)
    tau = float(tau)
    n_samples, n_classes = x.shape
    exp = np.exp(x * 1. / (k * tau))

    term_1 = np.zeros(n_samples)
    for indices in itertools.combinations(range(n_classes), k):
        delta = 1. - np.sum(indices == y[:, None], axis=1)
        term_1 += np.product(exp[:, indices], axis=1) * np.exp(delta / tau)

    term_2 = np.zeros(n_samples)
    for i in range(n_samples):
        all_but_y = [j for j in range(n_classes) if j != y[i]]
        for indices in itertools.combinations(all_but_y, k - 1):
            term_2[i] += np.product(exp[i, indices]) * exp[i, y[i]]

    loss = tau * (np.log(term_1) - np.log(term_2))

    return loss 
開發者ID:oval-group,項目名稱:smooth-topk,代碼行數:23,代碼來源:py_ref.py

示例3: test_diric

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def test_diric(self):
        # Test behavior near multiples of 2pi.  Regression test for issue
        # described in gh-4001.
        n_odd = [1, 5, 25]
        x = np.array(2*np.pi + 5e-5).astype(np.float32)
        assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=7)
        x = np.array(2*np.pi + 1e-9).astype(np.float64)
        assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15)
        x = np.array(2*np.pi + 1e-15).astype(np.float64)
        assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=15)
        if hasattr(np, 'float128'):
            # No float128 available in 32-bit numpy
            x = np.array(2*np.pi + 1e-12).astype(np.float128)
            assert_almost_equal(special.diric(x, n_odd), 1.0, decimal=19)

        n_even = [2, 4, 24]
        x = np.array(2*np.pi + 1e-9).astype(np.float64)
        assert_almost_equal(special.diric(x, n_even), -1.0, decimal=15)

        # Test at some values not near a multiple of pi
        x = np.arange(0.2*np.pi, 1.0*np.pi, 0.2*np.pi)
        octave_result = [0.872677996249965, 0.539344662916632,
                         0.127322003750035, -0.206011329583298]
        assert_almost_equal(special.diric(x, 3), octave_result, decimal=15) 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:26,代碼來源:test_basic.py

示例4: _joint_mi

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def _joint_mi(s1, s2, t, alph_s1, alph_s2, alph_t):
    """
    Joint MI estimator in the samples domain
    """

    [s12, alph_s12] = _join_variables(s1, s2, alph_s1, alph_s2)

    t_count = np.zeros(alph_t, dtype=np.int)
    s12_count = np.zeros(alph_s12, dtype=np.int)
    joint_t_s12_count = np.zeros((alph_t, alph_s12), dtype=np.int)

    num_samples = len(t)

    for obs in range(0, num_samples):
        t_count[t[obs]] += 1
        s12_count[s12[obs]] += 1
        joint_t_s12_count[t[obs], s12[obs]] += 1

    t_prob = np.divide(t_count, num_samples).astype('float128')
    s12_prob = np.divide(s12_count, num_samples).astype('float128')
    joint_t_s12_prob = np.divide(joint_t_s12_count, num_samples).astype('float128')

    jmi = _mi_prob(t_prob, s12_prob, joint_t_s12_prob)

    return jmi 
開發者ID:pwollstadt,項目名稱:IDTxl,代碼行數:27,代碼來源:estimators_fast_pid_ext_rep.py

示例5: _mi_prob

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def _mi_prob(s1_prob, s2_prob, joint_s1_s2_prob):
    """ MI estimator in the prob domain."""
    total = np.zeros(1).astype('float128')

    [alph_s1, alph_s2] = np.shape(joint_s1_s2_prob)

    for sym_s1 in range(0, alph_s1):
        for sym_s2 in range(0, alph_s2):

            if (s1_prob[sym_s1] * s2_prob[sym_s2] *
                    joint_s1_s2_prob[sym_s1, sym_s2] > 0):

                local_contrib = (
                    np.log(joint_s1_s2_prob[sym_s1, sym_s2]) -
                    np.log(s1_prob[sym_s1]) -
                    np.log(s2_prob[sym_s2])) / np.log(2)

                weighted_contrib = (
                    joint_s1_s2_prob[sym_s1, sym_s2] *
                    local_contrib)
            else:
                weighted_contrib = 0
            total += weighted_contrib

    return total 
開發者ID:pwollstadt,項目名稱:IDTxl,代碼行數:27,代碼來源:estimators_fast_pid.py

示例6: _mi_prob

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def _mi_prob(self, s1_prob, s2_prob, joint_s1_s2_prob):
        """MI estimator in the prob domain."""
        total = np.zeros(1).astype('float128')
        [alph_s1, alph_s2] = np.shape(joint_s1_s2_prob)

        for sym_s1 in range(0, alph_s1):
            for sym_s2 in range(0, alph_s2):

                if (s1_prob[sym_s1] * s2_prob[sym_s2] *
                        joint_s1_s2_prob[sym_s1, sym_s2] > 0):

                    local_contrib = (
                        np.log(joint_s1_s2_prob[sym_s1, sym_s2]) -
                        np.log(s1_prob[sym_s1]) -
                        np.log(s2_prob[sym_s2])
                                    ) / np.log(2)

                    weighted_contrib = (joint_s1_s2_prob[sym_s1, sym_s2] *
                                        local_contrib)
                else:
                    weighted_contrib = 0
                total += weighted_contrib

        return total 
開發者ID:pwollstadt,項目名稱:IDTxl,代碼行數:26,代碼來源:estimators_pid.py

示例7: _joint_mi

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def _joint_mi(self, s1, s2, t, alph_s1, alph_s2, alph_t):
        """Joint MI estimator in the samples domain."""

        [s12, alph_s12] = _join_variables(s1, s2, alph_s1, alph_s2)

        t_count = np.zeros(alph_t, dtype=np.int)
        s12_count = np.zeros(alph_s12, dtype=np.int)
        joint_t_s12_count = np.zeros((alph_t, alph_s12), dtype=np.int)

        num_samples = len(t)

        for obs in range(0, num_samples):
            t_count[t[obs]] += 1
            s12_count[s12[obs]] += 1
            joint_t_s12_count[t[obs], s12[obs]] += 1

        t_prob = np.divide(t_count, num_samples).astype('float128')
        s12_prob = np.divide(s12_count, num_samples).astype('float128')
        joint_t_s12_prob = np.divide(joint_t_s12_count,
                                     num_samples).astype('float128')

        return self._mi_prob(t_prob, s12_prob, joint_t_s12_prob) 
開發者ID:pwollstadt,項目名稱:IDTxl,代碼行數:24,代碼來源:estimators_pid.py

示例8: exp_stats

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def exp_stats(e,e_post,a):
    if a < np.float128(1.0):
        H,H_post = exp_hist(e),exp_hist(e_post)
        upper,lower,value = 0,0,np.float128(1.0)
        for row in H:
            if row[0] >= a: upper += int(row[1])
        for row in H_post:
            lower += int(row[1])
            if lower >= upper:
                value = row[0]
                break
        h = np.array([e[g] for g in e])
        x = [a,value,len(e)-upper,upper,np.median(h),np.mean(h),np.std(h)]
    else:
        x = [a,a,len(e),0,np.float128(0.0),np.float128(0.0),np.float128(0.0)]
    return x
      
#given the old group expectation E and cutoff t,b value alpha
#estimates a alpha_post value that uses the histogram of the
#posterior estimate E_post to adjust the alpha value 
開發者ID:TheJacksonLaboratory,項目名稱:SVE,代碼行數:22,代碼來源:fusor_utils.py

示例9: select_groups

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def select_groups(W,gamma=0.0):
    G = {}
    for t in W:
        G[t] = {}
        for b in W[t]:
            C,G[t][b] = [],{}
            for g in W[t][b]:
                if len(g)<=1 and W[t][b][g]>=gamma: C += [g[0]]
            if len(C)<=0:
                G[t][b] = {(None,):np.float128(0.0)}
            else:
                C = sorted(C)
                for i in range(1,len(C)+1):
                    for j in it.combinations(C,i):
                        G[t][b][j] = W[t][b][j]
    return G
                
#pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp  
#given a svul, join idxs from list j
################################################################################
#given a svul, join idxs from list j 
開發者ID:TheJacksonLaboratory,項目名稱:SVE,代碼行數:23,代碼來源:fusor_utils.py

示例10: test_np_builtin

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def test_np_builtin(self):
        self.pod_util(np.int64(42))
        self.pod_util(np.int32(42))
        self.pod_util(np.int16(42))
        self.pod_util(np.int8(42))
        self.pod_util(np.uint64(42))
        self.pod_util(np.uint32(42))
        self.pod_util(np.uint16(42))
        self.pod_util(np.uint8(42))
        self.pod_util(np.float16(42))
        self.pod_util(np.float32(42))
        self.pod_util(np.float64(42))
        # self.pod_util(np.float128(42))
        self.pod_util(np.complex64(42))
        self.pod_util(np.complex128(42))
        # self.pod_util(np.complex256(42)) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:18,代碼來源:test_codec.py

示例11: numpy2bifrost

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def numpy2bifrost(dtype):
    if   dtype == np.int8:       return _bf.BF_DTYPE_I8
    elif dtype == np.int16:      return _bf.BF_DTYPE_I16
    elif dtype == np.int32:      return _bf.BF_DTYPE_I32
    elif dtype == np.uint8:      return _bf.BF_DTYPE_U8
    elif dtype == np.uint16:     return _bf.BF_DTYPE_U16
    elif dtype == np.uint32:     return _bf.BF_DTYPE_U32
    elif dtype == np.float16:    return _bf.BF_DTYPE_F16
    elif dtype == np.float32:    return _bf.BF_DTYPE_F32
    elif dtype == np.float64:    return _bf.BF_DTYPE_F64
    elif dtype == np.float128:   return _bf.BF_DTYPE_F128
    elif dtype == ci8:           return _bf.BF_DTYPE_CI8
    elif dtype == ci16:          return _bf.BF_DTYPE_CI16
    elif dtype == ci32:          return _bf.BF_DTYPE_CI32
    elif dtype == cf16:          return _bf.BF_DTYPE_CF16
    elif dtype == np.complex64:  return _bf.BF_DTYPE_CF32
    elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
    elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
    else: raise ValueError("Unsupported dtype: " + str(dtype)) 
開發者ID:ledatelescope,項目名稱:bifrost,代碼行數:21,代碼來源:dtype.py

示例12: numpy2string

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def numpy2string(dtype):
    if   dtype == np.int8:       return 'i8'
    elif dtype == np.int16:      return 'i16'
    elif dtype == np.int32:      return 'i32'
    elif dtype == np.int64:      return 'i64'
    elif dtype == np.uint8:      return 'u8'
    elif dtype == np.uint16:     return 'u16'
    elif dtype == np.uint32:     return 'u32'
    elif dtype == np.uint64:     return 'u64'
    elif dtype == np.float16:    return 'f16'
    elif dtype == np.float32:    return 'f32'
    elif dtype == np.float64:    return 'f64'
    elif dtype == np.float128:   return 'f128'
    elif dtype == np.complex64:  return 'cf32'
    elif dtype == np.complex128: return 'cf64'
    elif dtype == np.complex256: return 'cf128'
    else: raise TypeError("Unsupported dtype: " + str(dtype)) 
開發者ID:ledatelescope,項目名稱:bifrost,代碼行數:19,代碼來源:dtype.py

示例13: process_csv

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def process_csv(filename, val=0):
    sum_f = np.float128([0.0] * OUTPUT_DIM)
    sum_sq_f = np.float128([0.0] * OUTPUT_DIM)
    print ("output_dim: %d" % OUTPUT_DIM)
    lines = read_csv(filename)
    # leave val% for validation
    train_seq = []
    valid_seq = []
    num = 0
    for ln in lines:
        train_seq.append(ln)
        num += 1
    print ("training seq:%d" % num)

    for cnt in range(len(train_seq)):
        sum_f += train_seq[cnt][1][:]
        sum_sq_f += train_seq[cnt][1][:] * train_seq[cnt][1][:]
    mean = sum_f / len(train_seq)
    var = sum_sq_f / len(train_seq) - mean * mean
    std = np.sqrt(var)
    print (len(train_seq), len(valid_seq))
    print ("current mean, std")
    print (mean, std)
    return (train_seq, valid_seq), (mean, std) 
開發者ID:cardwing,項目名稱:Codes-for-Steering-Control,代碼行數:26,代碼來源:3d_resnet_lstm.py

示例14: getCsvData

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def getCsvData():
    dtypes = {
        "int8_value": numpy.int8,
        "int16_value": numpy.int16,
        "int32_value": numpy.int32,
        #"int64_value": numpy.int64, # OverFlowError
        "uint8_value": numpy.uint8,
        "uint16_value": numpy.uint16,
        "uint32_value": numpy.uint32,
        #"uint64_value": numpy.uint64, # OverFlowError
        "float16_value": numpy.float16,
        "float32_value": numpy.float32,
        "float64_value": numpy.float64,
        # "float128_value": numpy.float128,
        "bool_value": numpy.bool_
    }
    delimiter = ","
    encoding = "utf-8"
    parse_dates = ["timestamp_value"]

    path = os.path.join(os.getcwd(), "examples/testData/test1.csv")
    if not os.path.exists(path):
        path = os.path.join(os.getcwd(), "testData/test1.csv")

    df = pandas.read_csv(
        path,
        dtype=dtypes,
        delimiter=delimiter,
        encoding=encoding,
        parse_dates=parse_dates
    )

    try:
        df["int64_value"] = df["int64_value"].astype(numpy.int64)
        df["uint64_value"] = df["uint64_value"].astype(numpy.uint64)
    except:
        raise

    return df 
開發者ID:datalyze-solutions,項目名稱:pandas-qt,代碼行數:41,代碼來源:util.py

示例15: _rews_validation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float128 [as 別名]
def _rews_validation(rews: np.ndarray, acts: np.ndarray):
    if rews.shape != (len(acts),):
        raise ValueError(
            "rewards must be 1D array, one entry for each action: "
            f"{rews.shape} != ({len(acts)},)"
        )
    if rews.dtype not in [np.float32, np.float64, np.float128]:
        raise ValueError("rewards dtype {self.rews.dtype} not a float") 
開發者ID:HumanCompatibleAI,項目名稱:imitation,代碼行數:10,代碼來源:types.py


注:本文中的numpy.float128方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。