當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.float方法代碼示例

本文整理匯總了Python中numpy.float方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.float方法的具體用法?Python numpy.float怎麽用?Python numpy.float使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.float方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _project_im_rois

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def _project_im_rois(im_rois, scales):
    """Project image RoIs into the image pyramid built by _get_image_blob.
    Arguments:
        im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
        scales (list): scale factors as returned by _get_image_blob
    Returns:
        rois (ndarray): R x 4 matrix of projected RoI coordinates
        levels (list): image pyramid levels used by each projected RoI
    """
    im_rois = im_rois.astype(np.float, copy=False)

    if len(scales) > 1:
        widths = im_rois[:, 2] - im_rois[:, 0] + 1
        heights = im_rois[:, 3] - im_rois[:, 1] + 1
        areas = widths * heights
        scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2)
        diff_areas = np.abs(scaled_areas - 224 * 224)
        levels = diff_areas.argmin(axis=1)[:, np.newaxis]
    else:
        levels = np.zeros((im_rois.shape[0], 1), dtype=np.int)

    rois = im_rois * scales[levels]

    return rois, levels 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:26,代碼來源:test.py

示例2: _coco_results_one_category

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def _coco_results_one_category(self, boxes, cat_id):
    results = []
    for im_ind, index in enumerate(self.image_index):
      dets = boxes[im_ind].astype(np.float)
      if dets == []:
        continue
      scores = dets[:, -1]
      xs = dets[:, 0]
      ys = dets[:, 1]
      ws = dets[:, 2] - xs + 1
      hs = dets[:, 3] - ys + 1
      results.extend(
        [{'image_id': index,
          'category_id': cat_id,
          'bbox': [xs[k], ys[k], ws[k], hs[k]],
          'score': scores[k]} for k in range(dets.shape[0])])
    return results 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:19,代碼來源:coco.py

示例3: load_images

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def load_images(input_dir, metadata_file_path, batch_shape):
    """Retrieve numpy arrays of images and labels, read from a directory."""
    num_images = batch_shape[0]
    with open(metadata_file_path) as input_file:
        reader = csv.reader(input_file)
        header_row = next(reader)
        rows = list(reader)

    row_idx_image_id = header_row.index('ImageId')
    row_idx_true_label = header_row.index('TrueLabel')
    images = np.zeros(batch_shape)
    labels = np.zeros(num_images, dtype=np.int32)
    for idx in xrange(num_images):
        row = rows[idx]
        filepath = os.path.join(input_dir, row[row_idx_image_id] + '.png')

        with tf.gfile.Open(filepath, 'rb') as f:
            image = np.array(
                Image.open(f).convert('RGB')).astype(np.float) / 255.0
        images[idx, :, :, :] = image
        labels[idx] = int(row[row_idx_true_label])
    return images, labels 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:24,代碼來源:test_imagenet_attacks.py

示例4: create_graph_mutag

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def create_graph_mutag(file):
    
    f = open(file, 'r')
    lines = f.read().splitlines()
    f.close()
    
    # get the indices of the vertext, adj list and class
    idx_vertex = lines.index("#v - vertex labels")
    idx_edge = lines.index("#e - edge labels")
    idx_clss = lines.index("#c - Class")
    
    # node label
    vl = [int(ivl) for ivl in lines[idx_vertex+1:idx_edge]]
    
    edge_list = lines[idx_edge+1:idx_clss]
    
    g = nx.parse_edgelist(edge_list, nodetype=int, data=(('weight', float),), delimiter=",")
    
    for i in range(1, g.number_of_nodes()+1):
        g.node[i]['labels'] = np.array(vl[i-1])
    
    c = int(lines[idx_clss+1])
    
    return g, c 
開發者ID:priba,項目名稱:nmp_qc,代碼行數:26,代碼來源:graph_reader.py

示例5: train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def train(self, train_structures, energies, forces, stresses=None, **kwargs):
        """
        Training data with model.

        Args:
            train_structures ([Structure]): The list of Pymatgen Structure object.
                energies ([float]): The list of total energies of each structure
                in structures list.
            energies ([float]): List of total energies of each structure in
                structures list.
            forces ([np.array]): List of (m, 3) forces array of each structure
                with m atoms in structures list. m can be varied with each
                single structure case.
            stresses (list): List of (6, ) virial stresses of each
                structure in structures list.
        """
        train_pool = pool_from(train_structures, energies, forces, stresses)
        _, df = convert_docs(train_pool)
        ytrain = df['y_orig'] / df['n']
        self.model.fit(inputs=train_structures, outputs=ytrain, **kwargs)
        self.specie = Element(train_structures[0].symbol_set[0]) 
開發者ID:materialsvirtuallab,項目名稱:mlearn,代碼行數:23,代碼來源:snap.py

示例6: evaluate

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def evaluate(self, test_structures, ref_energies, ref_forces, ref_stresses):
        """
        Evaluate energies, forces and stresses of structures with trained
        interatomic potentials.

        Args:
            test_structures ([Structure]): List of Pymatgen Structure Objects.
            ref_energies ([float]): List of DFT-calculated total energies of
                each structure in structures list.
            ref_forces ([np.array]): List of DFT-calculated (m, 3) forces of
                each structure with m atoms in structures list. m can be varied
                with each single structure case.
            ref_stresses (list): List of DFT-calculated (6, ) viriral stresses
                of each structure in structures list.
        """
        predict_pool = pool_from(test_structures, ref_energies,
                                 ref_forces, ref_stresses)
        _, df_orig = convert_docs(predict_pool)

        _, df_predict = convert_docs(pool_from(test_structures))
        outputs = self.model.predict(inputs=test_structures, override=True)
        df_predict['y_orig'] = df_predict['n'] * outputs

        return df_orig, df_predict 
開發者ID:materialsvirtuallab,項目名稱:mlearn,代碼行數:26,代碼來源:snap.py

示例7: apply_cmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
    '''
    apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
      they are used to scale z.

    Note that this function can automatically rescale data into log-space if the colormap is a
    neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
    optional argument logrescale=True.
    '''
    zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
    zs = np.asarray(zs, dtype='float')
    if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
    if logrescale:
        if vmin is None: vmin = np.log(np.nanmin(zs))
        if vmax is None: vmax = np.log(np.nanmax(zs))
        mn = np.exp(vmin)
        u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
    else:        
        if vmin is None: vmin = np.nanmin(zs)
        if vmax is None: vmax = np.nanmax(zs)
        u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
    u[np.isnan(u)] = -np.inf
    return cmap(u) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例8: preprocess

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def preprocess(self, img):
        """
        Preprocess a 210x160x3 uint8 frame into a 6400 (80x80) (1 x input_size)
        float vector.
        """
        # Crop, down-sample, erase background and set foreground to 1.
        # See https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5
        img = img[35:195]
        img = img[::2, ::2, 0]
        img[img == 144] = 0
        img[img == 109] = 0
        img[img != 0] = 1
        curr = np.expand_dims(img.astype(np.float).ravel(), axis=0)
        # Subtract the last preprocessed image.
        diff = (curr - self.prev if self.prev is not None
                else np.zeros((1, curr.shape[1])))
        self.prev = curr
        return diff 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:envs.py

示例9: bbox_overlaps

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def bbox_overlaps(boxes, query_boxes):
    """
    determine overlaps between boxes and query_boxes
    :param boxes: n * 4 bounding boxes
    :param query_boxes: k * 4 bounding boxes
    :return: overlaps: n * k overlaps
    """
    n_ = boxes.shape[0]
    k_ = query_boxes.shape[0]
    overlaps = np.zeros((n_, k_), dtype=np.float)
    for k in range(k_):
        query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1)
        for n in range(n_):
            iw = min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + 1
            if iw > 0:
                ih = min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + 1
                if ih > 0:
                    box_area = (boxes[n, 2] - boxes[n, 0] + 1) * (boxes[n, 3] - boxes[n, 1] + 1)
                    all_area = float(box_area + query_box_area - iw * ih)
                    overlaps[n, k] = iw * ih / all_area
    return overlaps 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:bbox.py

示例10: _coco_results_one_category

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def _coco_results_one_category(self, boxes, cat_id):
        results = []
        for im_ind, roi_rec in enumerate(self.roidb):
            index = roi_rec['index']
            dets = boxes[im_ind].astype(np.float)
            if len(dets) == 0:
                continue
            scores = dets[:, -1]
            xs = dets[:, 0]
            ys = dets[:, 1]
            ws = dets[:, 2] - xs + 1
            hs = dets[:, 3] - ys + 1
            result = [{'image_id': index,
                       'category_id': cat_id,
                       'bbox': [xs[k], ys[k], ws[k], hs[k]],
                       'score': scores[k]} for k in range(dets.shape[0])]
            results.extend(result)
        return results 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:coco.py

示例11: convert_dropout

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def convert_dropout(node, **kwargs):
    """Map MXNet's Dropout operator attributes to onnx's Dropout operator
    and return the created node.
    """
    onnx = import_onnx_modules()
    name = node["name"]
    input_id = kwargs["index_lookup"][node["inputs"][0][0]]
    input_name = kwargs["proc_nodes"][input_id].name
    attrs = node["attrs"]
    probability = float(attrs["p"])

    dropout_node = onnx.helper.make_node(
        "Dropout",
        [input_name],
        [name],
        ratio=probability,
        name=name
    )
    return [dropout_node] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:_op_translations.py

示例12: convert_clip

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def convert_clip(node, **kwargs):
    """Map MXNet's Clip operator attributes to onnx's Clip operator
    and return the created node.
    """
    onnx = import_onnx_modules()
    name = node["name"]
    input_idx = kwargs["index_lookup"][node["inputs"][0][0]]
    proc_nodes = kwargs["proc_nodes"]
    input_node = proc_nodes[input_idx].name
    attrs = node["attrs"]
    a_min = np.float(attrs.get('a_min', -np.inf))
    a_max = np.float(attrs.get('a_max', np.inf))

    clip_node = onnx.helper.make_node(
        "Clip",
        [input_node],
        [name],
        name=name,
        min=a_min,
        max=a_max
    )
    return [clip_node] 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:_op_translations.py

示例13: breastcancer_cont

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def breastcancer_cont(replication=2):
    f = open(path + "breast_cancer_wisconsin_cont.txt", "r")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 9)])
    y_train = np.array(data[:, 9])
    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 9)]])
        y_train = np.hstack([y_train, data[:, 9]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "breast_cancer_wisconsin_cont_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 9)])
    y_test = np.array(data[:, 9])
    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 9)]])
        y_test = np.hstack([y_test, data[:, 9]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:22,代碼來源:datasets.py

示例14: iris

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def iris(replication=2):
    f = open(path + "iris.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_train = np.array(data[:, range(0, 4)], dtype=np.float)
    y_train = data[:, 4]

    for j in range(replication - 1):
        x_train = np.vstack([x_train, data[:, range(0, 4)]])
        y_train = np.hstack([y_train, data[:, 4]])
    x_train = np.array(x_train, dtype=np.float)

    f = open(path + "iris_test.txt")
    data = np.loadtxt(f, delimiter=",", dtype=np.string0)
    x_test = np.array(data[:, range(0, 4)], dtype=np.float)
    y_test = data[:, 4]

    for j in range(replication - 1):
        x_test = np.vstack([x_test, data[:, range(0, 4)]])
        y_test = np.hstack([y_test, data[:, 4]])
    x_test = np.array(x_test, dtype=np.float)

    return x_train, y_train, x_test, y_test 
開發者ID:romanorac,項目名稱:discomll,代碼行數:24,代碼來源:datasets.py

示例15: compute_cor_loc

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import float [as 別名]
def compute_cor_loc(num_gt_imgs_per_class,
                    num_images_correctly_detected_per_class):
  """Compute CorLoc according to the definition in the following paper.

  https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf

  Returns nans if there are no ground truth images for a class.

  Args:
    num_gt_imgs_per_class: 1D array, representing number of images containing
        at least one object instance of a particular class
    num_images_correctly_detected_per_class: 1D array, representing number of
        images that are correctly detected at least one object instance of a
        particular class

  Returns:
    corloc_per_class: A float numpy array represents the corloc score of each
      class
  """
  return np.where(
      num_gt_imgs_per_class == 0,
      np.nan,
      num_images_correctly_detected_per_class / num_gt_imgs_per_class) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:metrics.py


注:本文中的numpy.float方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。