當前位置: 首頁>>代碼示例>>Python>>正文


Python helper._FFTCache方法代碼示例

本文整理匯總了Python中numpy.fft.helper._FFTCache方法的典型用法代碼示例。如果您正苦於以下問題:Python helper._FFTCache方法的具體用法?Python helper._FFTCache怎麽用?Python helper._FFTCache使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy.fft.helper的用法示例。


在下文中一共展示了helper._FFTCache方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_basic_behaviour

# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_basic_behaviour(self):
        c = _FFTCache(max_size_in_mb=1, max_item_count=4)

        # Put
        c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))

        # Get
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))

        # Nothing should be left.
        assert_equal(len(c._dict), 0)

        # Now put everything in twice so it can be retrieved once and each will
        # still have one item left.
        for _ in range(2):
            c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
            c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))
        assert_equal(len(c._dict), 2) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:28,代碼來源:test_helper.py

示例2: test_basic_behaviour

# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_basic_behaviour(self):
        c = _FFTCache(max_size_in_mb=1, max_item_count=4)

        # Put
        c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))

        # Get
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))

        # Nothing should be left.
        self.assertEqual(len(c._dict), 0)

        # Now put everything in twice so it can be retrieved once and each will
        # still have one item left.
        for _ in range(2):
            c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
            c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(1),
                                  np.ones(2, dtype=np.float32))
        assert_array_almost_equal(c.pop_twiddle_factors(2),
                                  np.zeros(2, dtype=np.float32))
        self.assertEqual(len(c._dict), 2) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:28,代碼來源:test_helper.py

示例3: test_automatic_pruning

# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_automatic_pruning(self):
        # That's around 2600 single precision samples.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)

        c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2])

        # This is larger than the limit but should still be kept.
        c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3])
        # Add one more.
        c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
        # The other three should no longer exist.
        assert_equal(list(c._dict.keys()), [4])

        # Now test the max item count pruning.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
        c.put_twiddle_factors(2, np.empty(2))
        c.put_twiddle_factors(1, np.empty(2))
        # Can still be accessed.
        assert_equal(list(c._dict.keys()), [2, 1])

        c.put_twiddle_factors(3, np.empty(2))
        # 1 and 3 can still be accessed - c[2] has been touched least recently
        # and is thus evicted.
        assert_equal(list(c._dict.keys()), [1, 3])

        # One last test. We will add a single large item that is slightly
        # bigger then the cache size. Some small items can still be added.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
        c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [1, 2, 3, 4])

        # One more big item. This time it is 6 smaller ones but they are
        # counted as one big item.
        for _ in range(6):
            c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
        # '1' no longer in the cache. Rest still in the cache.
        assert_equal(list(c._dict.keys()), [2, 3, 4, 5])

        # Another big item - should now be the only item in the cache.
        c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
        assert_equal(list(c._dict.keys()), [6]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:49,代碼來源:test_helper.py

示例4: test_automatic_pruning

# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_automatic_pruning(self):
        # That's around 2600 single precision samples.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)

        c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
        self.assertEqual(list(c._dict.keys()), [1, 2])

        # This is larger than the limit but should still be kept.
        c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
        self.assertEqual(list(c._dict.keys()), [1, 2, 3])
        # Add one more.
        c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
        # The other three should no longer exist.
        self.assertEqual(list(c._dict.keys()), [4])

        # Now test the max item count pruning.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
        c.put_twiddle_factors(2, np.empty(2))
        c.put_twiddle_factors(1, np.empty(2))
        # Can still be accessed.
        self.assertEqual(list(c._dict.keys()), [2, 1])

        c.put_twiddle_factors(3, np.empty(2))
        # 1 and 3 can still be accessed - c[2] has been touched least recently
        # and is thus evicted.
        self.assertEqual(list(c._dict.keys()), [1, 3])

        # One last test. We will add a single large item that is slightly
        # bigger then the cache size. Some small items can still be added.
        c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
        c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
        c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
        c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
        self.assertEqual(list(c._dict.keys()), [1, 2, 3, 4])

        # One more big item. This time it is 6 smaller ones but they are
        # counted as one big item.
        for _ in range(6):
            c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
        # '1' no longer in the cache. Rest still in the cache.
        self.assertEqual(list(c._dict.keys()), [2, 3, 4, 5])

        # Another big item - should now be the only item in the cache.
        c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
        self.assertEqual(list(c._dict.keys()), [6]) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:49,代碼來源:test_helper.py


注:本文中的numpy.fft.helper._FFTCache方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。