本文整理匯總了Python中numpy.fft.helper._FFTCache方法的典型用法代碼示例。如果您正苦於以下問題:Python helper._FFTCache方法的具體用法?Python helper._FFTCache怎麽用?Python helper._FFTCache使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.fft.helper
的用法示例。
在下文中一共展示了helper._FFTCache方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic_behaviour
# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_basic_behaviour(self):
c = _FFTCache(max_size_in_mb=1, max_item_count=4)
# Put
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
# Get
assert_array_almost_equal(c.pop_twiddle_factors(1),
np.ones(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(2),
np.zeros(2, dtype=np.float32))
# Nothing should be left.
assert_equal(len(c._dict), 0)
# Now put everything in twice so it can be retrieved once and each will
# still have one item left.
for _ in range(2):
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(1),
np.ones(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(2),
np.zeros(2, dtype=np.float32))
assert_equal(len(c._dict), 2)
示例2: test_basic_behaviour
# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_basic_behaviour(self):
c = _FFTCache(max_size_in_mb=1, max_item_count=4)
# Put
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
# Get
assert_array_almost_equal(c.pop_twiddle_factors(1),
np.ones(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(2),
np.zeros(2, dtype=np.float32))
# Nothing should be left.
self.assertEqual(len(c._dict), 0)
# Now put everything in twice so it can be retrieved once and each will
# still have one item left.
for _ in range(2):
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(1),
np.ones(2, dtype=np.float32))
assert_array_almost_equal(c.pop_twiddle_factors(2),
np.zeros(2, dtype=np.float32))
self.assertEqual(len(c._dict), 2)
示例3: test_automatic_pruning
# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_automatic_pruning(self):
# That's around 2600 single precision samples.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)
c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
assert_equal(list(c._dict.keys()), [1, 2])
# This is larger than the limit but should still be kept.
c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
assert_equal(list(c._dict.keys()), [1, 2, 3])
# Add one more.
c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
# The other three should no longer exist.
assert_equal(list(c._dict.keys()), [4])
# Now test the max item count pruning.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
c.put_twiddle_factors(2, np.empty(2))
c.put_twiddle_factors(1, np.empty(2))
# Can still be accessed.
assert_equal(list(c._dict.keys()), [2, 1])
c.put_twiddle_factors(3, np.empty(2))
# 1 and 3 can still be accessed - c[2] has been touched least recently
# and is thus evicted.
assert_equal(list(c._dict.keys()), [1, 3])
# One last test. We will add a single large item that is slightly
# bigger then the cache size. Some small items can still be added.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
assert_equal(list(c._dict.keys()), [1, 2, 3, 4])
# One more big item. This time it is 6 smaller ones but they are
# counted as one big item.
for _ in range(6):
c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
# '1' no longer in the cache. Rest still in the cache.
assert_equal(list(c._dict.keys()), [2, 3, 4, 5])
# Another big item - should now be the only item in the cache.
c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
assert_equal(list(c._dict.keys()), [6])
示例4: test_automatic_pruning
# 需要導入模塊: from numpy.fft import helper [as 別名]
# 或者: from numpy.fft.helper import _FFTCache [as 別名]
def test_automatic_pruning(self):
# That's around 2600 single precision samples.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)
c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
self.assertEqual(list(c._dict.keys()), [1, 2])
# This is larger than the limit but should still be kept.
c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
self.assertEqual(list(c._dict.keys()), [1, 2, 3])
# Add one more.
c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
# The other three should no longer exist.
self.assertEqual(list(c._dict.keys()), [4])
# Now test the max item count pruning.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
c.put_twiddle_factors(2, np.empty(2))
c.put_twiddle_factors(1, np.empty(2))
# Can still be accessed.
self.assertEqual(list(c._dict.keys()), [2, 1])
c.put_twiddle_factors(3, np.empty(2))
# 1 and 3 can still be accessed - c[2] has been touched least recently
# and is thus evicted.
self.assertEqual(list(c._dict.keys()), [1, 3])
# One last test. We will add a single large item that is slightly
# bigger then the cache size. Some small items can still be added.
c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
self.assertEqual(list(c._dict.keys()), [1, 2, 3, 4])
# One more big item. This time it is 6 smaller ones but they are
# counted as one big item.
for _ in range(6):
c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
# '1' no longer in the cache. Rest still in the cache.
self.assertEqual(list(c._dict.keys()), [2, 3, 4, 5])
# Another big item - should now be the only item in the cache.
c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
self.assertEqual(list(c._dict.keys()), [6])