當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.fabs方法代碼示例

本文整理匯總了Python中numpy.fabs方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.fabs方法的具體用法?Python numpy.fabs怎麽用?Python numpy.fabs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.fabs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: absdiff

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def absdiff(self, constant_value, separate_re_im=False):
        """
        Returns a ReportableQty that is the (element-wise in the vector case)
        difference between `constant_value` and this one given by:

        `abs(self - constant_value)`.
        """
        if separate_re_im:
            re_v = _np.fabs(_np.real(self.value) - _np.real(constant_value))
            im_v = _np.fabs(_np.imag(self.value) - _np.imag(constant_value))
            if self.has_eb():
                return (ReportableQty(re_v, _np.fabs(_np.real(self.errbar)), self.nonMarkovianEBs),
                        ReportableQty(im_v, _np.fabs(_np.imag(self.errbar)), self.nonMarkovianEBs))
            else:
                return ReportableQty(re_v), ReportableQty(im_v)

        else:
            v = _np.absolute(self.value - constant_value)
            if self.has_eb():
                return ReportableQty(v, _np.absolute(self.errbar), self.nonMarkovianEBs)
            else:
                return ReportableQty(v) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:24,代碼來源:reportableqty.py

示例2: test_irreg_hf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def test_irreg_hf(self):
        idx = date_range('2012-6-22 21:59:51', freq='S', periods=100)
        df = DataFrame(np.random.randn(len(idx), 2), idx)

        irreg = df.iloc[[0, 1, 3, 4]]
        _, ax = self.plt.subplots()
        irreg.plot(ax=ax)
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()

        sec = 1. / 24 / 60 / 60
        assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()

        _, ax = self.plt.subplots()
        df2 = df.copy()
        df2.index = df.index.astype(object)
        df2.plot(ax=ax)
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
        assert (np.fabs(diffs[1:] - sec) < 1e-8).all() 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:test_datetimelike.py

示例3: rotipp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def rotipp(acceleration_x, time_step_x, acceleration_y, time_step_y, periods,
        percentile, damping=0.05, units="cm/s/s", method="Nigam-Jennings"):
    """
    Returns the rotationally independent spectrum RotIpp as defined by
    Boore (2010)
    """
    if np.fabs(time_step_x - time_step_y) > 1E-10:
        raise ValueError("Record pair must have the same time-step!")
    acceleration_x, acceleration_y = equalise_series(acceleration_x,
                                                     acceleration_y)
    target, rota, rotv, rotd, angles = rotdpp(acceleration_x, time_step_x,
                                              acceleration_y, time_step_y,
                                              periods, percentile, damping,
                                              units, method)
    locn, penalty = _get_gmrotd_penalty(
        np.hstack([target["PGA"],target["Pseudo-Acceleration"]]),
        rota)
    target_theta = np.radians(angles[locn])
    arotpp = acceleration_x * np.cos(target_theta) +\
        acceleration_y * np.sin(target_theta)
    spec = get_response_spectrum(arotpp, time_step_x, periods, damping, units,
        method)[0]
    spec["GMRot{:2.0f}".format(percentile)] = target
    return spec 
開發者ID:GEMScienceTools,項目名稱:gmpe-smtk,代碼行數:26,代碼來源:intensity_measures.py

示例4: nextPos

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def nextPos(self, x, x_b, r1, r2, r3, r4, task):
		r"""Move individual to new position in search space.

		Args:
			x (numpy.ndarray): Individual represented with components.
			x_b (nmppy.ndarray): Best individual represented with components.
			r1 (float): Number dependent on algorithm iteration/generations.
			r2 (float): Random number in range of 0 and 2 * PI.
			r3 (float): Random number in range [Rmin, Rmax].
			r4 (float): Random number in range [0, 1].
			task (Task): Optimization task.

		Returns:
			numpy.ndarray: New individual that is moved based on individual ``x``.
		"""
		return task.repair(x + r1 * (sin(r2) if r4 < 0.5 else cos(r2)) * fabs(r3 * x_b - x), self.Rand) 
開發者ID:NiaOrg,項目名稱:NiaPy,代碼行數:18,代碼來源:sca.py

示例5: rho

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def rho(self, z):
        r"""
        The robust criterion function for Huber's t.

        Parameters
        ----------
        z : array-like
            1d array

        Returns
        -------
        rho : array
            rho(z) = .5*z**2            for \|z\| <= t

            rho(z) = \|z\|*t - .5*t**2    for \|z\| > t
        """
        z = np.asarray(z)
        test = self._subset(z)
        return (test * 0.5 * z**2 +
                (1 - test) * (np.fabs(z) * self.t - 0.5 * self.t**2)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:norms.py

示例6: weights

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def weights(self, z):
        """
        Huber's t weighting function for the IRLS algorithm

        The psi function scaled by z

        Parameters
        ----------
        z : array-like
            1d array

        Returns
        -------
        weights : array
            weights(z) = 1          for \|z\| <= t

            weights(z) = t/\|z\|      for \|z\| > t
        """
        z = np.asarray(z)
        test = self._subset(z)
        absz = np.fabs(z)
        absz[test] = 1.0
        return test + (1 - test) * self.t / absz 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:norms.py

示例7: psi

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def psi(self, z):
        """
        The psi function for Ramsay's Ea estimator

        The analytic derivative of rho

        Parameters
        ----------
        z : array-like
            1d array

        Returns
        -------
        psi : array
            psi(z) = z*exp(-a*\|z\|)
        """
        z = np.asarray(z)
        return z * np.exp(-self.a * np.fabs(z)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:norms.py

示例8: __call__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def __call__(self, df_resid, nobs, resid):
        h = (df_resid)/nobs*(self.d**2 + (1-self.d**2)*\
                    Gaussian.cdf(self.d)-.5 - self.d/(np.sqrt(2*np.pi))*\
                    np.exp(-.5*self.d**2))
        s = mad(resid)
        subset = lambda x: np.less(np.fabs(resid/x),self.d)
        chi = lambda s: subset(s)*(resid/s)**2/2+(1-subset(s))*(self.d**2/2)
        scalehist = [np.inf,s]
        niter = 1
        while (np.abs(scalehist[niter-1] - scalehist[niter])>self.tol \
                and niter < self.maxiter):
            nscale = np.sqrt(1/(nobs*h)*np.sum(chi(scalehist[-1]))*\
                    scalehist[-1]**2)
            scalehist.append(nscale)
            niter += 1
            #if niter == self.maxiter:
            #    raise ValueError("Huber's scale failed to converge")
        return scalehist[-1] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:20,代碼來源:scale.py

示例9: cont

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def cont(self, ML=False, rtol=1.0e-05, params_rtol=1e-5, params_atol=1e-4):
        '''convergence check for iterative estimation

        '''

        self.dev, old = self.deviance(ML=ML), self.dev

        #self.history.append(np.hstack((self.dev, self.a)))
        self.history['llf'].append(self.dev)
        self.history['params'].append(self.a.copy())
        self.history['D'].append(self.D.copy())

        if np.fabs((self.dev - old) / self.dev) < rtol:   #why is there times `*`?
            #print np.fabs((self.dev - old)), self.dev, old
            self.termination = 'llf'
            return False

        #break if parameters converged
        #TODO: check termination conditions, OR or AND
        if np.all(np.abs(self.a - self._a_old) < (params_rtol * self.a + params_atol)):
            self.termination = 'params'
            return False

        self._a_old =  self.a.copy()
        return True 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:27,代碼來源:mixed.py

示例10: _wrap_results

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if is_datetime64_dtype(dtype):
        if not isinstance(result, np.ndarray):
            result = tslib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif is_timedelta64_dtype(dtype):
        if not isinstance(result, np.ndarray):

            # raise if we have a timedelta64[ns] which is too large
            if np.fabs(result) > _int64_max:
                raise ValueError("overflow in timedelta operation")

            result = tslib.Timedelta(result, unit='ns')
        else:
            result = result.astype('i8').view(dtype)

    return result 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:nanops.py

示例11: lidar_to_img

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def lidar_to_img(points, img_size):
    # pdb.set_trace()
    lidar_data = np.array(points[:, :2])
    lidar_data *= 9.9999
    lidar_data -= (0.5 * img_size, 0.5 * img_size)
    lidar_data = np.fabs(lidar_data)
    lidar_data = lidar_data.astype(np.int32)
    lidar_data = np.reshape(lidar_data, (-1, 2))
    lidar_img = np.zeros((img_size, img_size))
    lidar_img[tuple(lidar_data.T)] = 255
    return torch.tensor(lidar_img).cuda()


# def lidar_to_img(points, img_size):
#     # pdb.set_trace()
#     lidar_data = points[:, :2]
#     lidar_data *= 9.9999
#     lidar_data -= torch.tensor((0.5 * img_size, 0.5 * img_size)).cuda()
#     lidar_data = torch.abs(lidar_data)
#     lidar_data = torch.floor(lidar_data).long()
#     lidar_data = lidar_data.view(-1, 2)
#     lidar_img = torch.zeros((img_size, img_size)).cuda()
#     lidar_img[lidar_data.permute(1,0)] = 255
#     return lidar_img 
開發者ID:anshulpaigwar,項目名稱:Attentional-PointNet,代碼行數:26,代碼來源:kitti_evaluation.py

示例12: lidar_to_heightmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def lidar_to_heightmap(points, img_size):
    # pdb.set_trace()
    lidar_data = np.array(points[:, :2])
    height_data = np.array(points[:,2])
    height_data *= 255/2
    height_data[height_data < 0] = 0
    height_data[height_data > 255] = 255
    height_data = np.fabs(height_data)
    height_data = height_data.astype(np.int32)


    lidar_data *= 9.9999
    lidar_data -= (0.5 * img_size, 0.5 * img_size)
    lidar_data = np.fabs(lidar_data)
    lidar_data = lidar_data.astype(np.int32)
    lidar_data = np.reshape(lidar_data, (-1, 2))
    lidar_img = np.zeros((img_size, img_size))
    lidar_img[tuple(lidar_data.T)] = height_data # TODO: sort the point wrt height first lex sort
    return lidar_img 
開發者ID:anshulpaigwar,項目名稱:Attentional-PointNet,代碼行數:21,代碼來源:kitti_LidarImg_data_generator.py

示例13: _max_error

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def _max_error(arrays1, arrays2):
  """Computes maximum elementwise gap between two lists of ndarrays.

  Computes the maximum elementwise gap between two lists with the same length,
  of arrays with the same shape.

  Args:
    arrays1: a lists of np.ndarrays.
    arrays2: a lists of np.ndarrays of the same shape as arrays1.

  Returns:
    The maximum elementwise absolute difference between the two lists of arrays.
  """
  error = 0
  for array1, array2 in zip(arrays1, arrays2):
    if array1.size or array2.size:  # Handle zero size ndarrays correctly
      error = np.maximum(error, np.fabs(array1 - array2).max())
  return error 
開發者ID:tensorflow,項目名稱:graphics,代碼行數:20,代碼來源:test_case.py

示例14: test_irreg_hf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def test_irreg_hf(self):
        import matplotlib.pyplot as plt
        fig = plt.gcf()
        plt.clf()
        fig.add_subplot(111)

        idx = date_range('2012-6-22 21:59:51', freq='S', periods=100)
        df = DataFrame(np.random.randn(len(idx), 2), idx)

        irreg = df.ix[[0, 1, 3, 4]]
        ax = irreg.plot()
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()

        sec = 1. / 24 / 60 / 60
        self.assert_((np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all())

        plt.clf()
        fig.add_subplot(111)
        df2 = df.copy()
        df2.index = df.index.asobject
        ax = df2.plot()
        diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
        self.assert_((np.fabs(diffs[1:] - sec) < 1e-8).all()) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:25,代碼來源:test_plotting.py

示例15: find_right_intersect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import fabs [as 別名]
def find_right_intersect(vec, target_val, start_index=0):
        nearest_index = start_index
        next_index = start_index

        size = len(vec) - 1
        if next_index == size:
            return size

        next_val = vec[next_index]
        best_distance = np.abs(next_val - target_val)
        while (next_index < size):
            next_index += 1
            next_val = vec[next_index]
            dist = np.fabs(next_val - target_val)  # pylint: disable=assignment-from-no-return
            if dist < best_distance:
                best_distance = dist
                nearest_index = next_index
            if next_index == size or next_val < target_val:
                break
        return nearest_index 
開發者ID:mobiusklein,項目名稱:ms_deisotope,代碼行數:22,代碼來源:shape_fitter.py


注:本文中的numpy.fabs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。