本文整理匯總了Python中numpy.extract方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.extract方法的具體用法?Python numpy.extract怎麽用?Python numpy.extract使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.extract方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _cdf
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def _cdf(self, x, c):
output = np.zeros(x.shape, dtype=x.dtype)
val = (1.0+c)/(1.0-c)
c1 = x < np.pi
c2 = 1-c1
xp = np.extract(c1, x)
xn = np.extract(c2, x)
if np.any(xn):
valn = np.extract(c2, np.ones_like(x)*val)
xn = 2*np.pi - xn
yn = np.tan(xn/2.0)
on = 1.0-1.0/np.pi*np.arctan(valn*yn)
np.place(output, c2, on)
if np.any(xp):
valp = np.extract(c1, np.ones_like(x)*val)
yp = np.tan(xp/2.0)
op = 1.0/np.pi*np.arctan(valp*yp)
np.place(output, c1, op)
return output
示例2: skew
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def skew(a, axis=0, bias=True):
a, axis = _chk_asarray(a,axis)
n = a.count(axis)
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
olderr = np.seterr(all='ignore')
try:
vals = ma.where(m2 == 0, 0, m3 / m2**1.5)
finally:
np.seterr(**olderr)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = ma.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
return vals
示例3: _detect_gear_level
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def _detect_gear_level(self, gear_level_image):
img_level = matcher.MM_COLOR_BY_HUE(
hue=(30 - 5, 30 + 5), visibility=(200, 255))(gear_level_image)
cv2.imshow('level', img_level)
img_level_hist = np.sum(img_level / 255, axis=0)
img_level_x = np.extract(img_level_hist > 3, np.arange(1024))
level_width = np.amax(img_level_x) - np.amin(img_level_x)
if level_width < 10:
return 1
elif level_width < 40:
return 2
return 3
# Sub abilities
示例4: take
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def take(a, indices, axis=None, out=None):
"""Takes elements of an array at specified indices along an axis.
This is an implementation of "fancy indexing" at single axis.
This function does not support ``mode`` option.
Args:
a (cupy.ndarray): Array to extract elements.
indices (int or array-like): Indices of elements that this function
takes.
axis (int): The axis along which to select indices. The flattened input
is used by default.
out (cupy.ndarray): Output array. If provided, it should be of
appropriate shape and dtype.
Returns:
cupy.ndarray: The result of fancy indexing.
.. seealso:: :func:`numpy.take`
"""
# TODO(okuta): check type
return a.take(indices, axis, out)
示例5: get_background_rms
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def get_background_rms(self):
"""
Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to
reduce bias from source pixels.
Returns
-------
rms : float
The image rms.
Notes
-----
The rms value is cached after first calculation.
"""
# TODO: return a proper background RMS ignoring the sources
# This is an approximate method suggested by PaulH.
# I have no idea where this magic 1.34896 number comes from...
if self._rms is None:
# Get the pixels values without the NaNs
data = numpy.extract(self.hdu.data > -9999999, self.hdu.data)
p25 = scipy.stats.scoreatpercentile(data, 25)
p75 = scipy.stats.scoreatpercentile(data, 75)
iqr = p75 - p25
self._rms = iqr / 1.34896
return self._rms
示例6: multiband_extract_off_diag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def multiband_extract_off_diag(mtx):
"""
extract off-diagonal entries in mtx
The output vector is order in a column major manner
Parameters
----------
mtx: input matrix to extract the off-diagonal entries
"""
# we transpose the matrix because the function np.extract will first flatten the matrix
# withe ordering convention 'C' instead of 'F'!!
Q = mtx.shape[0]
num_bands = mtx.shape[2]
extract_cond = np.reshape((1 - np.eye(Q)).T.astype(bool), (-1, 1), order='F')
return np.column_stack([np.reshape(np.extract(extract_cond, mtx[:, :, band].T),
(-1, 1), order='F')
for band in range(num_bands)])
示例7: mtx_freq2visi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def mtx_freq2visi(M, p_mic_x, p_mic_y):
"""
build the matrix that maps the Fourier series to the visibility
Parameters
----------
M:
the Fourier series expansion is limited from -M to M
p_mic_x:
a vector that constains microphones x coordinates
p_mic_y:
a vector that constains microphones y coordinates
"""
num_mic = p_mic_x.size
ms = np.reshape(np.arange(-M, M + 1, step=1), (1, -1), order='F')
p_mic_x_outer = p_mic_x[:, np.newaxis]
p_mic_y_outer = p_mic_y[:, np.newaxis]
p_mic_x_inner = p_mic_x[np.newaxis, :]
p_mic_y_inner = p_mic_y[np.newaxis, :]
extract_cond = np.reshape((1 - np.eye(num_mic)).astype(bool), (-1, 1), order='C')
baseline_x = np.extract(extract_cond, p_mic_x_outer - p_mic_x_inner)[:, np.newaxis]
baseline_y = np.extract(extract_cond, p_mic_y_outer - p_mic_y_inner)[:, np.newaxis]
baseline_norm = np.sqrt(baseline_x * baseline_x + baseline_y * baseline_y)
return (-1j) ** ms * sp.special.jv(ms, baseline_norm) * \
np.exp(1j * ms * np.arctan2(baseline_y, baseline_x))
示例8: build_mtx_amp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def build_mtx_amp(phi_k, p_mic_x, p_mic_y):
"""
the matrix that maps Diracs' amplitudes to the visibility
Parameters
----------
phi_k:
Diracs' location (azimuth)
p_mic_x:
a vector that contains microphones' x-coordinates
p_mic_y:
a vector that contains microphones' y-coordinates
"""
xk, yk = polar2cart(1, phi_k[np.newaxis, :])
num_mic = p_mic_x.size
p_mic_x_outer = p_mic_x[:, np.newaxis]
p_mic_y_outer = p_mic_y[:, np.newaxis]
p_mic_x_inner = p_mic_x[np.newaxis, :]
p_mic_y_inner = p_mic_y[np.newaxis, :]
extract_cond = np.reshape((1 - np.eye(num_mic)).astype(bool), (-1, 1), order='C')
baseline_x = np.extract(extract_cond, p_mic_x_outer - p_mic_x_inner)[:, np.newaxis]
baseline_y = np.extract(extract_cond, p_mic_y_outer - p_mic_y_inner)[:, np.newaxis]
return np.exp(-1j * (xk * baseline_x + yk * baseline_y))
示例9: extract_off_diag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def extract_off_diag(mtx):
"""
extract off diagonal entries in mtx.
The output vector is order in a column major manner.
:param mtx: input matrix to extract the off diagonal entries
:return:
"""
# we transpose the matrix because the function np.extract will first flatten the matrix
# withe ordering convention 'C' instead of 'F'!!
extract_cond = np.reshape((1 - np.eye(*mtx.shape)).T.astype(bool), (-1, 1), order='F')
return np.reshape(np.extract(extract_cond, mtx.T), (-1, 1), order='F')
示例10: lsofcsr
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def lsofcsr(coo3, dtype=float, shape=None, axis=0):
"""
Generate a list of csr matrices out of a 3-dimensional coo format
Args:
coo3 : must be a tuple (data, (i1,i2,i3)) in analogy to the tuple (data, (rows,cols)) for a common coo format
shape : a tuple of dimensions if they are known or cannot be guessed correctly from the data
axis : index (0,1 or 2) along which to construct the list of sparse arrays
Returns:
list of csr matrices
"""
(d, it) = coo3
assert len(it)==3
for ia in it: assert len(d)==len(ia)
shape = [max(ia)+1 for ia in it] if shape is None else shape
#print( len(d) )
#print( shape )
iir = [i for i in range(len(shape)) if i!=axis]
#print(__name__, iir)
#print(__name__, type(it), type(it[0]==0))
#print(__name__, it[0]==0)
lsofcsr = [0] * shape[axis]
sh = [shape[i] for i in iir]
for i in range(shape[axis]):
mask = it[axis]==i
csrm = csr_matrix( (extract(mask,d), (extract(mask,it[iir[0]]),extract(mask,it[iir[1]]) )), shape=sh, dtype=dtype)
csrm.eliminate_zeros()
lsofcsr[i] = csrm
#print(__name__, 'ttot', ttot)
return lsofcsr
#
#
#
示例11: place
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def place(arr, mask, vals):
"""
Change elements of an array based on conditional and input values.
Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
`place` uses the first N elements of `vals`, where N is the number of
True values in `mask`, while `copyto` uses the elements where `mask`
is True.
Note that `extract` does the exact opposite of `place`.
Parameters
----------
arr : ndarray
Array to put data into.
mask : array_like
Boolean mask array. Must have the same size as `a`.
vals : 1-D sequence
Values to put into `a`. Only the first N elements are used, where
N is the number of True values in `mask`. If `vals` is smaller
than N, it will be repeated, and if elements of `a` are to be masked,
this sequence must be non-empty.
See Also
--------
copyto, put, take, extract
Examples
--------
>>> arr = np.arange(6).reshape(2, 3)
>>> np.place(arr, arr>2, [44, 55])
>>> arr
array([[ 0, 1, 2],
[44, 55, 44]])
"""
if not isinstance(arr, np.ndarray):
raise TypeError("argument 1 must be numpy.ndarray, "
"not {name}".format(name=type(arr).__name__))
return _insert(arr, mask, vals)
示例12: testExtractExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def testExtractExecution(self):
data = np.arange(12).reshape((3, 4))
a = tensor(data, chunk_size=2)
condition = mod(a, 3) == 0
t = extract(condition, a)
res = self.executor.execute_tensor(t, concat=True)[0]
expected = np.extract(np.mod(data, 3) == 0, data)
np.testing.assert_array_equal(res, expected)
示例13: _lazywhere
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
"""
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
This one only evaluates f(arr1[cond], arr2[cond], ...).
For example,
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
>>> def f(a, b):
return a*b
>>> _lazywhere(a > 2, (a, b), f, np.nan)
array([ nan, nan, 21., 32.])
Notice it assumes that all `arrays` are of the same shape, or can be
broadcasted together.
"""
if fillvalue is None:
if f2 is None:
raise ValueError("One of (fillvalue, f2) must be given.")
else:
fillvalue = np.nan
else:
if f2 is not None:
raise ValueError("Only one of (fillvalue, f2) can be given.")
arrays = np.broadcast_arrays(*arrays)
temp = tuple(np.extract(cond, arr) for arr in arrays)
tcode = np.mintypecode([a.dtype.char for a in arrays])
out = _valarray(np.shape(arrays[0]), value=fillvalue, typecode=tcode)
np.place(out, cond, f(*temp))
if f2 is not None:
temp = tuple(np.extract(~cond, arr) for arr in arrays)
np.place(out, ~cond, f2(*temp))
return out
示例14: _lazyselect
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def _lazyselect(condlist, choicelist, arrays, default=0):
"""
Mimic `np.select(condlist, choicelist)`.
Notice it assumes that all `arrays` are of the same shape, or can be
broadcasted together.
All functions in `choicelist` must accept array arguments in the order
given in `arrays` and must return an array of the same shape as broadcasted
`arrays`.
Examples
--------
>>> x = np.arange(6)
>>> np.select([x <3, x > 3], [x**2, x**3], default=0)
array([ 0, 1, 4, 0, 64, 125])
>>> _lazyselect([x < 3, x > 3], [lambda x: x**2, lambda x: x**3], (x,))
array([ 0., 1., 4., 0., 64., 125.])
>>> a = -np.ones_like(x)
>>> _lazyselect([x < 3, x > 3],
... [lambda x, a: x**2, lambda x, a: a * x**3],
... (x, a), default=np.nan)
array([ 0., 1., 4., nan, -64., -125.])
"""
arrays = np.broadcast_arrays(*arrays)
tcode = np.mintypecode([a.dtype.char for a in arrays])
out = _valarray(np.shape(arrays[0]), value=default, typecode=tcode)
for index in range(len(condlist)):
func, cond = choicelist[index], condlist[index]
if np.all(cond is False):
continue
cond, _ = np.broadcast_arrays(cond, arrays[0])
temp = tuple(np.extract(cond, arr) for arr in arrays)
np.place(out, cond, func(*temp))
return out
示例15: _stats
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import extract [as 別名]
def _stats(self, b, moments='mv'):
mu, mu2, g1, g2 = None, None, None, None
if 'm' in moments:
mask = b > 1
bt = np.extract(mask, b)
mu = valarray(np.shape(b), value=np.inf)
np.place(mu, mask, bt / (bt-1.0))
if 'v' in moments:
mask = b > 2
bt = np.extract(mask, b)
mu2 = valarray(np.shape(b), value=np.inf)
np.place(mu2, mask, bt / (bt-2.0) / (bt-1.0)**2)
if 's' in moments:
mask = b > 3
bt = np.extract(mask, b)
g1 = valarray(np.shape(b), value=np.nan)
vals = 2 * (bt + 1.0) * np.sqrt(bt - 2.0) / ((bt - 3.0) * np.sqrt(bt))
np.place(g1, mask, vals)
if 'k' in moments:
mask = b > 4
bt = np.extract(mask, b)
g2 = valarray(np.shape(b), value=np.nan)
vals = (6.0*np.polyval([1.0, 1.0, -6, -2], bt) /
np.polyval([1.0, -7.0, 12.0, 0.0], bt))
np.place(g2, mask, vals)
return mu, mu2, g1, g2