當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.exp2方法代碼示例

本文整理匯總了Python中numpy.exp2方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.exp2方法的具體用法?Python numpy.exp2怎麽用?Python numpy.exp2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.exp2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def __init__(self, h5_filename, resolution, channels=3, buffer_size_mb=512):
        rlog2 = int(np.floor(np.log2(resolution)))
        assert resolution == 2 ** rlog2
        self.resolution = resolution
        self.channels = channels
        self.h5_file = h5py.File(h5_filename, 'w', libver='latest')
        self.h5_lods = []
        self.lods = []
        self.buffers = []
        self.buffer_sizes = []
        self.metadata = {}
        for lod in range(rlog2, -1, -1):
            r = 2 ** lod; c = channels
            bytes_per_item = c * (r ** 2)
            chunk_size = int(np.ceil(128.0 / bytes_per_item))
            buffer_size = int(np.ceil(float(buffer_size_mb) * np.exp2(20) / bytes_per_item))
            lod = self.h5_file.create_dataset('%dx%d' % (r,r), shape=(0,c,r,r), dtype=np.uint8,
                maxshape=(None,c,r,r), chunks=(chunk_size,c,r,r), compression='gzip', compression_opts=4)
            self.metadata['%dx%d' % (r, r)] = []
            self.h5_lods.append(lod)
            self.lods.append('%dx%d' % (r, r))
            self.buffers.append(np.zeros((buffer_size,c,r,r), dtype=np.uint8))
            self.buffer_sizes.append(0)
        print('HDF5 Exporter will use following LODs', self.lods) 
開發者ID:pfnet-research,項目名稱:chainer-stylegan,代碼行數:26,代碼來源:folder_to_multisize_hdf5.py

示例2: robust_outer_product

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def robust_outer_product(vec_1, vec_2):
    """
    Calculates a 'robust' outer product of two vectors that may or may not
    contain very small values.

    Parameters
    ----------
    vec_1 : 1D ndarray
    vec_2 : 1D ndarray

    Returns
    -------
    outer_prod : 2D ndarray. The outer product of vec_1 and vec_2
    """
    mantissa_1, exponents_1 = np.frexp(vec_1)
    mantissa_2, exponents_2 = np.frexp(vec_2)
    new_mantissas = mantissa_1[None, :] * mantissa_2[:, None]
    new_exponents = exponents_1[None, :] + exponents_2[:, None]
    return new_mantissas * np.exp2(new_exponents) 
開發者ID:timothyb0912,項目名稱:pylogit,代碼行數:21,代碼來源:choice_calcs.py

示例3: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def __init__(self, h5_filename, resolution, channels=3):
        rlog2 = int(np.floor(np.log2(resolution)))
        assert resolution == 2 ** rlog2
        self.resolution = resolution
        self.channels = channels
        self.h5_file = h5py.File(h5_filename, 'w')
        self.h5_lods = []
        self.buffers = []
        self.buffer_sizes = []
        for lod in xrange(rlog2, -1, -1):
            r = 2 ** lod; c = channels
            bytes_per_item = c * (r ** 2)
            chunk_size = int(np.ceil(128.0 / bytes_per_item))
            buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item))
            lod = self.h5_file.create_dataset('data%dx%d' % (r,r), shape=(0,c,r,r), dtype=np.uint8,
                maxshape=(None,c,r,r), chunks=(chunk_size,c,r,r), compression='gzip', compression_opts=4)
            self.h5_lods.append(lod)
            self.buffers.append(np.zeros((buffer_size,c,r,r), dtype=np.uint8))
            self.buffer_sizes.append(0) 
開發者ID:willylulu,項目名稱:celeba-hq-modified,代碼行數:21,代碼來源:h5tool.py

示例4: inspect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def inspect(h5_filename):
    print '%-20s%s' % ('HDF5 filename', h5_filename)
    file_size = os.stat(h5_filename).st_size
    print '%-20s%.2f GB' % ('Total size', float(file_size) / np.exp2(30))

    h5 = h5py.File(h5_filename, 'r')
    lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
    shapes = [lod.shape for lod in lods]
    shape = shapes[0]
    h5.close()
    print '%-20s%d' % ('Total images', shape[0])
    print '%-20s%dx%d' % ('Resolution', shape[3], shape[2])
    print '%-20s%d' % ('Color channels', shape[1])
    print '%-20s%.2f KB' % ('Size per image', float(file_size) / shape[0] / np.exp2(10))

    if len(lods) != int(np.log2(shape[3])) + 1:
        print 'Warning: The HDF5 file contains incorrect number of LODs'
    if any(s[0] != shape[0] for s in shapes):
        print 'Warning: The HDF5 file contains inconsistent number of images in different LODs'
        print 'Perhaps the dataset creation script was terminated abruptly?'

#---------------------------------------------------------------------------- 
開發者ID:willylulu,項目名稱:celeba-hq-modified,代碼行數:24,代碼來源:h5tool.py

示例5: report

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def report(self):
        """Return metrics calculated by the model."""
        # if we haven't initialized yet, just return a dummy object
        if not hasattr(self, "trainer"):
            return {}

        output = {k: v.avg for k, v in self.meters.items()}

        if "nll_loss" in self.meters:
            # special case, we used sentence averaging so ppl comes from nll_loss
            output["ppl"] = np.exp2(self.meters["nll_loss"].avg)
        else:
            # normal case, just use loss
            output["ppl"] = np.exp2(self.meters["loss"].avg)

        # Fairseq trainer metrics we'll pass up the way
        trainer_metrics = {"ups", "wps", "gnorm", "clip"}
        if self.is_training:
            for k in trainer_metrics:
                output[k] = self.trainer.meters[k].avg

        # for display purposes
        output = {k: round_sigfigs(v, 4) for k, v in output.items()}
        return output 
開發者ID:natashamjaques,項目名稱:neural_chat,代碼行數:26,代碼來源:fairseq.py

示例6: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def __init__(self, h5_filename, resolution, channels=3):
        rlog2 = int(np.floor(np.log2(resolution)))
        assert resolution == 2 ** rlog2
        self.resolution = resolution
        self.channels = channels
        self.h5_file = h5py.File(h5_filename, 'w')
        self.h5_lods = []
        self.buffers = []
        self.buffer_sizes = []
        for lod in range(rlog2, -1, -1):
            r = 2 ** lod; c = channels
            bytes_per_item = c * (r ** 2)
            chunk_size = int(np.ceil(128.0 / bytes_per_item))
            buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item))
            #change to channel last
            lod = self.h5_file.create_dataset('data%dx%d' % (r,r), shape=(0,r,r,c), dtype=np.uint8,
                maxshape=(None,r,r,c), chunks=(chunk_size,r,r,c), compression='gzip', compression_opts=4)
            
            self.h5_lods.append(lod)
            self.buffers.append(np.zeros((buffer_size,r,r,c), dtype=np.uint8))
            self.buffer_sizes.append(0) 
開發者ID:MSC-BUAA,項目名稱:Keras-progressive_growing_of_gans,代碼行數:23,代碼來源:h5tool.py

示例7: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def __init__(self, h5_filename, resolution, channels=3):
        rlog2 = int(np.floor(np.log2(resolution)))
        assert resolution == 2 ** rlog2
        self.resolution = resolution
        self.channels = channels
        self.h5_file = h5py.File(h5_filename, 'w')
        self.h5_lods = []
        self.buffers = []
        self.buffer_sizes = []
        for lod in xrange(rlog2, -1, -1):
            r = 2 ** lod;
            c = channels
            bytes_per_item = c * (r ** 2)
            chunk_size = int(np.ceil(128.0 / bytes_per_item))
            buffer_size = int(np.ceil(512.0 * np.exp2(20) / bytes_per_item))
            lod = self.h5_file.create_dataset('data%dx%d' % (r, r), shape=(0, c, r, r), dtype=np.uint8,
                                              maxshape=(None, c, r, r), chunks=(chunk_size, c, r, r),
                                              compression='gzip', compression_opts=4)
            self.h5_lods.append(lod)
            self.buffers.append(np.zeros((buffer_size, c, r, r), dtype=np.uint8))
            self.buffer_sizes.append(0) 
開發者ID:zhangqianhui,項目名稱:progressive_growing_of_gans_tensorflow,代碼行數:23,代碼來源:h5tool.py

示例8: inspect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def inspect(h5_filename):
    print('%-20s%s' % ('HDF5 filename', h5_filename))
    file_size = os.stat(h5_filename).st_size
    print('%-20s%.2f GB' % ('Total size', float(file_size) / np.exp2(30)))

    h5 = h5py.File(h5_filename, 'r')
    lods = sorted([value for key, value in h5.iteritems() if key.startswith('data')], key=lambda lod: -lod.shape[3])
    shapes = [lod.shape for lod in lods]
    shape = shapes[0]
    h5.close()
    print('%-20s%d' % ('Total images', shape[0]))
    print('%-20s%dx%d' % ('Resolution', shape[3], shape[2]))
    print('%-20s%d' % ('Color channels', shape[1]))
    print('%-20s%.2f KB' % ('Size per image', float(file_size) / shape[0] / np.exp2(10)))

    if len(lods) != int(np.log2(shape[3])) + 1:
        print('Warning: The HDF5 file contains incorrect number of LODs')
    if any(s[0] != shape[0] for s in shapes):
        print('Warning: The HDF5 file contains inconsistent number of images in different LODs')
        print('Perhaps the dataset creation script was terminated abruptly?')


# ---------------------------------------------------------------------------- 
開發者ID:zhangqianhui,項目名稱:progressive_growing_of_gans_tensorflow,代碼行數:25,代碼來源:h5tool.py

示例9: exp2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def exp2(x):
    x = to_potential(x)
    if is_const_potential(x): return PotentialConstant(np.exp2(x.c))
    else:                     return ConstantPowerPotential(2.0, x) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:6,代碼來源:core.py

示例10: _fractal_correlation_get_r

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def _fractal_correlation_get_r(r, signal, dist):
    if isinstance(r, str):
        if r == "nolds":
            sd = np.std(signal, ddof=1)
            min_r, max_r, factor = 0.1 * sd, 0.5 * sd, 1.03

            r_n = int(np.floor(np.log(1.0 * max_r / min_r) / np.log(factor)))
            r_vals = np.array([min_r * (factor ** i) for i in range(r_n + 1)])

        elif r == "Corr_Dim":
            r_min, r_max = np.min(dist[np.where(dist > 0)]), np.exp(np.floor(np.log(np.max(dist))))

            n_r = np.int(np.floor(np.log(r_max / r_min))) + 1

            ones = -1 * np.ones([n_r])
            r_vals = r_max * np.exp(ones * np.arange(n_r) - ones)

        elif r == "boon2008":
            r_min, r_max = np.min(dist[np.where(dist > 0)]), np.max(dist)
            r_vals = r_min + np.arange(1, 65) * ((r_max - r_min) / 64)

    if isinstance(r, int):
        dist_range = np.max(dist) - np.min(dist)
        r_min, r_max = (np.min(dist) + 0.025 * dist_range), (np.min(dist) + 0.5 * dist_range)
        r_vals = np.exp2(np.linspace(np.log2(r_min), np.log2(r_max), r, endpoint=True))

    return r_vals 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:29,代碼來源:fractal_correlation.py

示例11: expspace

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def expspace(start, stop, num=50, base=1):
    """Exponential range.

    Creates a list of integer values of a given length from start to stop, spread by an exponential function.

    Parameters
    ----------
    start : int
        Minimum range values.
    stop : int
        Maximum range values.
    num : int
        Number of samples to generate. Default is 50. Must be non-negative.
    base : float
        If 1, will use ``np.exp()``, if 2 will use ``np.exp2()``.

    Returns
    -------
    array
        An array of integer values spread by the exponential function.

    Examples
    ---------
    >>> import neurokit2 as nk
    >>> nk.expspace(start=4, stop=100, num=10) #doctest: +ELLIPSIS
    array([  4,   6,   8,  12,  17,  24,  34,  49,  70, 100])

    """
    if base == 1:
        seq = np.exp(np.linspace(np.log(start), np.log(stop), num, endpoint=True))
    else:
        seq = np.exp2(np.linspace(np.log2(start), np.log2(stop), num, endpoint=True))  # pylint: disable=E1111

    # Round and convert to int
    seq = np.round(seq).astype(np.int)

    return seq 
開發者ID:neuropsychology,項目名稱:NeuroKit,代碼行數:39,代碼來源:expspace.py

示例12: test_exp2_values

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def test_exp2_values(self):
        x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
        y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for dt in ['f', 'd', 'g']:
            xf = np.array(x, dtype=dt)
            yf = np.array(y, dtype=dt)
            assert_almost_equal(np.exp2(yf), xf) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:9,代碼來源:test_umath.py

示例13: test_log1p_compiler_shenanigans

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def test_log1p_compiler_shenanigans(self):
        # Check if log1p is behaving on 32 bit intel systems.
        assert_(np.isfinite(np.log1p(np.exp2(-53)))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:5,代碼來源:test_regression.py

示例14: eval_per_query

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def eval_per_query(self, y, y_pred):
        """
        This method helps compute the DCG score per query. It is called by
        the eval function which averages and aggregates the scores
        for each query.
        
        Parameters
        ----------
        y: numpy array
            Represents the labels of instances corresponding to one query in
            the dataset (ground truth).
        y_pred: numpy array. 
            Represents the predicted document scores obtained during the model
            scoring phase for that query.

        Returns
        -------
        dcg: float
            Represents the DCG score for one query.

        """

        idx_y_pred_sorted = np.argsort(y_pred)[::-1]
        if self.cutoff is not None:
            idx_y_pred_sorted = idx_y_pred_sorted[:self.cutoff]

        discount = np.log2(np.arange(2, idx_y_pred_sorted.size + 2))

        if self.implementation == "flat":
            gain = y[idx_y_pred_sorted]
        elif self.implementation == "exp":
            gain = np.exp2(y[idx_y_pred_sorted]) - 1.0

        dcg = (gain / discount).sum()
        return dcg 
開發者ID:hpclab,項目名稱:rankeval,代碼行數:37,代碼來源:dcg.py

示例15: exp2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp2 [as 別名]
def exp2(x, out=None, where=None, **kwargs):
    """
    Calculate `2**p` for all `p` in the input tensor.

    Parameters
    ----------
    x : array_like
        Input values.
    out : Tensor, None, or tuple of tensor and None, optional
        A location into which the result is stored. If provided, it must have
        a shape that the inputs broadcast to. If not provided or `None`,
        a freshly-allocated tensor is returned. A tuple (possible only as a
        keyword argument) must have length equal to the number of outputs.
    where : array_like, optional
        Values of True indicate to calculate the ufunc at that position, values
        of False indicate to leave the value in the output alone.
    **kwargs

    Returns
    -------
    out : Tensor
        Element-wise 2 to the power `x`.

    See Also
    --------
    power

    Examples
    --------
    >>> import mars.tensor as mt

    >>> mt.exp2([2, 3]).execute()
    array([ 4.,  8.])
    """
    op = TensorExp2(**kwargs)
    return op(x, out=out, where=where) 
開發者ID:mars-project,項目名稱:mars,代碼行數:38,代碼來源:exp2.py


注:本文中的numpy.exp2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。