當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.exp方法代碼示例

本文整理匯總了Python中numpy.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.exp方法的具體用法?Python numpy.exp怎麽用?Python numpy.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mtx_freq2visi

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def mtx_freq2visi(M, p_mic_x, p_mic_y):
    """
    build the matrix that maps the Fourier series to the visibility
    :param M: the Fourier series expansion is limited from -M to M
    :param p_mic_x: a vector that constains microphones x coordinates
    :param p_mic_y: a vector that constains microphones y coordinates
    :return:
    """
    num_mic = p_mic_x.size
    ms = np.reshape(np.arange(-M, M + 1, step=1), (1, -1), order='F')
    G = np.zeros((num_mic * (num_mic - 1), 2 * M + 1), dtype=complex, order='C')
    count_G = 0
    for q in range(num_mic):
        p_x_outer = p_mic_x[q]
        p_y_outer = p_mic_y[q]
        for qp in range(num_mic):
            if not q == qp:
                p_x_qqp = p_x_outer - p_mic_x[qp]
                p_y_qqp = p_y_outer - p_mic_y[qp]
                norm_p_qqp = np.sqrt(p_x_qqp ** 2 + p_y_qqp ** 2)
                phi_qqp = np.arctan2(p_y_qqp, p_x_qqp)
                G[count_G, :] = (-1j) ** ms * sp.special.jv(ms, norm_p_qqp) * \
                                np.exp(1j * ms * phi_qqp)
                count_G += 1
    return G 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:tools_fri_doa_plane.py

示例2: compute_final_scores

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def compute_final_scores(self, average_loss, nums):
        average_loss["total_macro"] /= nums["total_macro"]
        average_loss["total_micro"] /= nums["total_micro"]

        if nums["negative_micro"]:
            average_loss["negative_macro"] /= nums["negative_macro"]
            average_loss["negative_micro"] /= nums["negative_micro"]
        else:
            average_loss["negative_macro"] = 0
            average_loss["negative_micro"] = 0

        average_loss["macro_diff"] = (average_loss["negative_macro"] -
                                      average_loss["total_macro"])
        average_loss["micro_diff"] = (average_loss["negative_micro"] -
                                      average_loss["total_micro"])

        average_loss["ppl_macro"] = np.exp(average_loss["total_macro"])
        average_loss["ppl_micro"] = np.exp(average_loss["total_micro"])

        return average_loss 
開發者ID:atcbosselut,項目名稱:comet-commonsense,代碼行數:22,代碼來源:conceptnet_evaluate.py

示例3: gen_visibility

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def gen_visibility(alphak, phi_k, pos_mic_x, pos_mic_y):
    """
    generate visibility from the Dirac parameter and microphone array layout
    :param alphak: Diracs' amplitudes
    :param phi_k: azimuths
    :param pos_mic_x: a vector that contains microphones' x coordinates
    :param pos_mic_y: a vector that contains microphones' y coordinates
    :return:
    """
    xk, yk = polar2cart(1, phi_k)
    num_mic = pos_mic_x.size
    visi = np.zeros((num_mic, num_mic), dtype=complex)
    for q in xrange(num_mic):
        p_x_outer = pos_mic_x[q]
        p_y_outer = pos_mic_y[q]
        for qp in xrange(num_mic):
            p_x_qqp = p_x_outer - pos_mic_x[qp]  # a scalar
            p_y_qqp = p_y_outer - pos_mic_y[qp]  # a scalar
            visi[qp, q] = np.dot(np.exp(-1j * (xk * p_x_qqp + yk * p_y_qqp)), alphak)
    return visi 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:22,代碼來源:generators.py

示例4: compute_mode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def compute_mode(self):
        """
        Pre-compute mode vectors from candidate locations (in spherical 
        coordinates).
        """
        if self.num_loc is None:
            raise ValueError('Lookup table appears to be empty. \
                Run build_lookup().')
        self.mode_vec = np.zeros((self.max_bin,self.M,self.num_loc), 
            dtype='complex64')
        if (self.nfft % 2 == 1):
            raise ValueError('Signal length must be even.')
        f = 1.0 / self.nfft * np.linspace(0, self.nfft / 2, self.max_bin) \
            * 1j * 2 * np.pi
        for i in range(self.num_loc):
            p_s = self.loc[:, i]
            for m in range(self.M):
                p_m = self.L[:, m]
                if (self.mode == 'near'):
                    dist = np.linalg.norm(p_m - p_s, axis=1)
                if (self.mode == 'far'):
                    dist = np.dot(p_s, p_m)
                # tau = np.round(self.fs*dist/self.c) # discrete - jagged
                tau = self.fs * dist / self.c  # "continuous" - smoother
                self.mode_vec[:, m, i] = np.exp(f * tau) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:doa.py

示例5: mtx_updated_G

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri):
    """
    Update the linear transformation matrix that links the FRI sequence to the
    visibilities by using the reconstructed Dirac locations.
    :param phi_recon: the reconstructed Dirac locations (azimuths)
    :param M: the Fourier series expansion is between -M to M
    :param p_mic_x: a vector that contains microphones' x-coordinates
    :param p_mic_y: a vector that contains microphones' y-coordinates
    :param mtx_freq2visi: the linear mapping from Fourier series to visibilities
    :return:
    """
    L = 2 * M + 1
    ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
    phi_recon = np.reshape(phi_recon, (1, -1), order='F')
    mtx_amp2freq = np.exp(-1j * ms_half * phi_recon)  # size: (M + 1) x K
    mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :]))  # size: (2M + 1) x K
    mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
    # projection mtx_freq2visi to the null space of mtx_fri2amp
    mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
                                       linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
    G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \
                np.dot(mtx_fri2visi_ri, mtx_null_proj)
    return G_updated 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:25,代碼來源:tools_fri_doa_plane.py

示例6: convert_image

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def convert_image(self, filename):
        pic = img.imread(filename)
        # Set FFT size to be double the image size so that the edge of the spectrum stays clear
        # preventing some bandfilter artifacts
        self.NFFT = 2*pic.shape[1]

        # Repeat image lines until each one comes often enough to reach the desired line time
        ffts = (np.flipud(np.repeat(pic[:, :, 0], self.repetitions, axis=0) / 16.)**2.) / 256.

        # Embed image in center bins of the FFT
        fftall = np.zeros((ffts.shape[0], self.NFFT))
        startbin = int(self.NFFT/4)
        fftall[:, startbin:(startbin+pic.shape[1])] = ffts

        # Generate random phase vectors for the FFT bins, this is important to prevent high peaks in the output
        # The phases won't be visible in the spectrum
        phases = 2*np.pi*np.random.rand(*fftall.shape)
        rffts = fftall * np.exp(1j*phases)

        # Perform the FFT per image line, then concatenate them to form the final signal
        timedata = np.fft.ifft(np.fft.ifftshift(rffts, axes=1), axis=1) / np.sqrt(float(self.NFFT))
        linear = timedata.flatten()
        linear = linear / np.max(np.abs(linear))
        return linear 
開發者ID:polygon,項目名稱:spectrum_painter,代碼行數:26,代碼來源:spectrum_painter.py

示例7: predict_on_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def predict_on_batch(self, x):
        # run feature collection pipeline for the batch
        soi = x.astype(str)  # make sure the type is right

        for i in range(len(soi)):
            if len(soi[i]) < 94:
                soi[i] = elongate_intron(soi[i])

        parameters_batch = self._construct_features_array(soi)

        don_cleavage_time = self.don_model.predict(parameters_batch)
        acc_cleavage_time = self.acc_model.predict(parameters_batch)

        cleavage_time = {'acc_cleavage_time': np.exp(acc_cleavage_time), 'don_cleavage_time': np.exp(don_cleavage_time)}

        return cleavage_time 
開發者ID:kipoi,項目名稱:models,代碼行數:18,代碼來源:model.py

示例8: predict_on_batch

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def predict_on_batch(self, x):
        # run feature collection pipeline for the batch
        soi = x["soi"].astype(str)  # make sure the type is right
        self.bp_indexes = x["bp_index"]

        for i in range(len(soi)):
            if len(soi[i]) < 94:
                soi[i] = elongate_intron(soi[i])

        parameters_batch = self._construct_features_array(soi)

        don_cleavage_time = self.don_model.predict(parameters_batch)
        acc_cleavage_time = self.acc_model.predict(parameters_batch)

        cleavage_time = {'acc_cleavage_time': np.exp(acc_cleavage_time), 'don_cleavage_time': np.exp(don_cleavage_time)}

        return cleavage_time 
開發者ID:kipoi,項目名稱:models,代碼行數:19,代碼來源:model.py

示例9: apply_cmap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def apply_cmap(zs, cmap, vmin=None, vmax=None, unit=None, logrescale=False):
    '''
    apply_cmap(z, cmap) applies the given cmap to the values in z; if vmin and/or vmax are passed,
      they are used to scale z.

    Note that this function can automatically rescale data into log-space if the colormap is a
    neuropythy log-space colormap such as log_eccentricity. To enable this behaviour use the
    optional argument logrescale=True.
    '''
    zs = pimms.mag(zs) if unit is None else pimms.mag(zs, unit)
    zs = np.asarray(zs, dtype='float')
    if pimms.is_str(cmap): cmap = matplotlib.cm.get_cmap(cmap)
    if logrescale:
        if vmin is None: vmin = np.log(np.nanmin(zs))
        if vmax is None: vmax = np.log(np.nanmax(zs))
        mn = np.exp(vmin)
        u = zdivide(nanlog(zs + mn) - vmin, vmax - vmin, null=np.nan)
    else:        
        if vmin is None: vmin = np.nanmin(zs)
        if vmax is None: vmax = np.nanmax(zs)
        u = zdivide(zs - vmin, vmax - vmin, null=np.nan)
    u[np.isnan(u)] = -np.inf
    return cmap(u) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例10: angle_to_cortex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def angle_to_cortex(self, theta, rho):
        'See help(neuropythy.registration.RetinotopyModel.angle_to_cortex).'
        #TODO: This should be made to work correctly with visual area boundaries: this could be done
        # by, for each area (e.g., V2) looking at its boundaries (with V1 and V3) and flipping the
        # adjacent triangles so that there is complete coverage of each hemifield, guaranteed.
        if not pimms.is_vector(theta): return self.angle_to_cortex([theta], [rho])[0]
        theta = np.asarray(theta)
        rho = np.asarray(rho)
        zs = np.asarray(
            rho * np.exp([np.complex(z) for z in 1j * ((90.0 - theta)/180.0*np.pi)]),
            dtype=np.complex)
        coords = np.asarray([zs.real, zs.imag]).T
        if coords.shape[0] == 0: return np.zeros((0, len(self.visual_meshes), 2))
        # we step through each area in the forward model and return the appropriate values
        tx = self.transform
        res = np.transpose(
            [self.visual_meshes[area].interpolate(coords, 'cortical_coordinates', method='linear')
             for area in sorted(self.visual_meshes.keys())],
            (1,0,2))
        if tx is not None:
            res = np.asarray(
                [np.dot(tx, np.vstack((area_xy.T, np.ones(len(area_xy)))))[0:2].T
                 for area_xy in res])
        return res 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:26,代碼來源:models.py

示例11: __call__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def __call__(self, x, y=None):
        if y is not None: x = (x,y)
        x = np.asarray(x)
        if len(x.shape) == 1: return self([x])[0]
        x = np.transpose(x) if x.shape[0] == 2 else x
        if not x.flags['WRITEABLE']: x = np.array(x)
        crd = self.coordinates
        sig = self.sigma
        wts = self._weight
        res = np.zeros(x.shape[0])
        for (sh, qd, bi) in zip(self.spatial_hashes, self.bin_query_distances, self.sigma_bins):
            neis = sh.query_ball_point(x, qd)
            res += [
                np.sum(w * np.exp(-0.5 * d2/s**2))
                for (ni,pt) in zip(neis,x)
                for ii in [bi[ni]]
                for (w,s,d2) in [(wts[ii], sig[ii], np.sum((crd[ii] - pt)**2, axis=1))]]
        return res 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:cmag.py

示例12: kernel_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def kernel_matrix(svm_model, original_X):

        if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
            K = (svm_model.zeta + svm_model.gamma * np.dot(original_X, original_X.T)) ** svm_model.Q
        elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
            pairwise_dists = squareform(pdist(original_X, 'euclidean'))
            K = np.exp(-svm_model.gamma * (pairwise_dists ** 2))

        '''
        K = np.zeros((svm_model.data_num, svm_model.data_num))

        for i in range(svm_model.data_num):
            for j in range(svm_model.data_num):
                if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
                    K[i, j] = Kernel.polynomial_kernel(svm_model, original_X[i], original_X[j])
                elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
                    K[i, j] = Kernel.gaussian_kernel(svm_model, original_X[i], original_X[j])
        '''

        return K 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:22,代碼來源:Utility.py

示例13: kernel_matrix_xX

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def kernel_matrix_xX(svm_model, original_x, original_X):

        if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
            K = (svm_model.zeta + svm_model.gamma * np.dot(original_x, original_X.T)) ** svm_model.Q
        elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
            K = np.exp(-svm_model.gamma * (cdist(original_X, np.atleast_2d(original_x), 'euclidean').T ** 2)).ravel()

        '''
        K = np.zeros((svm_model.data_num, svm_model.data_num))

        for i in range(svm_model.data_num):
            for j in range(svm_model.data_num):
                if (svm_model.svm_kernel == 'polynomial_kernel' or svm_model.svm_kernel == 'soft_polynomial_kernel'):
                    K[i, j] = Kernel.polynomial_kernel(svm_model, original_x, original_X[j])
                elif (svm_model.svm_kernel == 'gaussian_kernel' or svm_model.svm_kernel == 'soft_gaussian_kernel'):
                    K[i, j] = Kernel.gaussian_kernel(svm_model, original_x, original_X[j])
        '''

        return K 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:21,代碼來源:Utility.py

示例14: pred_test

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def pred_test(testing_data, exe, param_list=None, save_path=""):
    ret = numpy.zeros((testing_data.shape[0], 2))
    if param_list is None:
        for i in range(testing_data.shape[0]):
            exe.arg_dict['data'][:] = testing_data[i, 0]
            exe.forward(is_train=False)
            ret[i, 0] = exe.outputs[0].asnumpy()
            ret[i, 1] = numpy.exp(exe.outputs[1].asnumpy())
        numpy.savetxt(save_path, ret)
    else:
        for i in range(testing_data.shape[0]):
            pred = numpy.zeros((len(param_list),))
            for j in range(len(param_list)):
                exe.copy_params_from(param_list[j])
                exe.arg_dict['data'][:] = testing_data[i, 0]
                exe.forward(is_train=False)
                pred[j] = exe.outputs[0].asnumpy()
            ret[i, 0] = pred.mean()
            ret[i, 1] = pred.std()**2
        numpy.savetxt(save_path, ret)
    mse = numpy.square(ret[:, 0] - testing_data[:, 0] **3).mean()
    return mse, ret 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:utils.py

示例15: synthetic_grad

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import exp [as 別名]
def synthetic_grad(X, theta, sigma1, sigma2, sigmax, rescale_grad=1.0, grad=None):
    if grad is None:
        grad = nd.empty(theta.shape, theta.context)
    theta1 = theta.asnumpy()[0]
    theta2 = theta.asnumpy()[1]
    v1 = sigma1 ** 2
    v2 = sigma2 ** 2
    vx = sigmax ** 2
    denominator = numpy.exp(-(X - theta1) ** 2 / (2 * vx)) + numpy.exp(
        -(X - theta1 - theta2) ** 2 / (2 * vx))
    grad_npy = numpy.zeros(theta.shape)
    grad_npy[0] = -rescale_grad * ((numpy.exp(-(X - theta1) ** 2 / (2 * vx)) * (X - theta1) / vx
                                    + numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
                                    X - theta1 - theta2) / vx) / denominator).sum() \
                  + theta1 / v1
    grad_npy[1] = -rescale_grad * ((numpy.exp(-(X - theta1 - theta2) ** 2 / (2 * vx)) * (
    X - theta1 - theta2) / vx) / denominator).sum() \
                  + theta2 / v2
    grad[:] = grad_npy
    return grad 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:22,代碼來源:bdk_demo.py


注:本文中的numpy.exp方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。