本文整理匯總了Python中numpy.equal方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.equal方法的具體用法?Python numpy.equal怎麽用?Python numpy.equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def test_equal():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Equal", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"equal_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.equal(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例2: zdivide
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def zdivide(a, b, null=0):
'''
zdivide(a, b) returns the quotient a / b as a numpy array object. Unlike numpy's divide function
or a/b syntax, zdivide will thread over the earliest dimension possible; thus if a.shape is
(4,2) and b.shape is 4, zdivide(a,b) is a equivalent to [ai*zinv(bi) for (ai,bi) in zip(a,b)].
The optional argument null (default: 0) may be given to specify that zeros in the arary b should
instead be replaced with the given value in the result. Note that if this value is not equal to
0, then any sparse array passed as argument b must be reified.
The zdivide function never raises an error due to divide-by-zero; if you desire this behavior,
use the divide function instead.
Note that zdivide(a,b, null=z) is not quite equivalent to a*zinv(b, null=z) unless z is 0; if z
is not zero, then the same elements that are zet to z in zinv(b, null=z) are set to z in the
result of zdivide(a,b, null=z) rather than the equivalent element of a times z.
'''
(a,b) = unbroadcast(a,b)
return czdivide(a,b, null=null)
示例3: feedforward
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def feedforward(self, X):
output = super().feedforward(X)
for t in range(1, self.time + 1):
time_gate = np.equal(t % self.tick_array, 0.)
Z = np.concatenate((self.inputs[t - 1], output), axis=-1)
gated_W = self.weights * time_gate[None, :]
gated_b = self.biases * time_gate
output = self.activation.forward(Z.dot(gated_W) + gated_b)
self.Zs.append(Z)
self.gates.append([time_gate, gated_W])
self.cache.append(output)
if self.return_seq:
self.output = np.stack(self.cache, axis=1)
else:
self.output = self.cache[-1]
return self.output
示例4: VOCap
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def VOCap(rec,prec):
mpre = np.zeros([1,2+len(prec)])
mpre[0,1:len(prec)+1] = prec
mrec = np.zeros([1,2+len(rec)])
mrec[0,1:len(rec)+1] = rec
mrec[0,len(rec)+1] = 1.0
for i in range(mpre.size-2,-1,-1):
mpre[0,i] = max(mpre[0,i],mpre[0,i+1])
i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1
i = i.flatten()
# compute area under the curve
ap = np.sum( np.multiply( np.subtract( mrec[0,i], mrec[0,i-1]), mpre[0,i] ) )
return ap
示例5: approx
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8):
"""
Returns true if all components of a and b are equal to given tolerances.
If fill_value is True, masked values considered equal. Otherwise,
masked values are considered unequal. The relative error rtol should
be positive and << 1.0 The absolute error atol comes into play for
those elements of b that are very small or zero; it says how small a
must be also.
"""
m = mask_or(getmask(a), getmask(b))
d1 = filled(a)
d2 = filled(b)
if d1.dtype.char == "O" or d2.dtype.char == "O":
return np.equal(d1, d2).ravel()
x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y))
return d.ravel()
示例6: almost
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def almost(a, b, decimal=6, fill_value=True):
"""
Returns True if a and b are equal up to decimal places.
If fill_value is True, masked values considered equal. Otherwise,
masked values are considered unequal.
"""
m = mask_or(getmask(a), getmask(b))
d1 = filled(a)
d2 = filled(b)
if d1.dtype.char == "O" or d2.dtype.char == "O":
return np.equal(d1, d2).ravel()
x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_)
y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_)
d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal)
return d.ravel()
示例7: test_subclass_that_overrides_eq
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def test_subclass_that_overrides_eq(self):
# While we cannot guarantee testing functions will always work for
# subclasses, the tests should ideally rely only on subclasses having
# comparison operators, not on them being able to store booleans
# (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
class MyArray(np.ndarray):
def __eq__(self, other):
return bool(np.equal(self, other).all())
def __ne__(self, other):
return not self == other
a = np.array([1., 2.]).view(MyArray)
b = np.array([2., 3.]).view(MyArray)
assert_(type(a == a), bool)
assert_(a == a)
assert_(a != b)
self._test_equal(a, a)
self._test_not_equal(a, b)
self._test_not_equal(b, a)
示例8: test_error_message
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def test_error_message(self):
with pytest.raises(AssertionError) as exc_info:
self._assert_func(np.array([1, 2]), np.array([[1, 2]]))
msg = str(exc_info.value)
msg2 = msg.replace("shapes (2L,), (1L, 2L)", "shapes (2,), (1, 2)")
msg_reference = textwrap.dedent("""\
Arrays are not equal
(shapes (2,), (1, 2) mismatch)
x: array([1, 2])
y: array([[1, 2]])""")
try:
assert_equal(msg, msg_reference)
except AssertionError:
assert_equal(msg2, msg_reference)
示例9: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例10: test_ignore_object_identity_in_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def test_ignore_object_identity_in_equal(self):
# Check error raised when comparing identical objects whose comparison
# is not a simple boolean, e.g., arrays that are compared elementwise.
a = np.array([np.array([1, 2, 3]), None], dtype=object)
assert_raises(ValueError, np.equal, a, a)
# Check error raised when comparing identical non-comparable objects.
class FunkyType(object):
def __eq__(self, other):
raise TypeError("I won't compare")
a = np.array([FunkyType()])
assert_raises(TypeError, np.equal, a, a)
# Check identity doesn't override comparison mismatch.
a = np.array([np.nan], dtype=object)
assert_equal(np.equal(a, a), [False])
示例11: equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def equal(x1, x2):
"""
Return (x1 == x2) element-wise.
Unlike `numpy.equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
not_equal, greater_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '==', True)
示例12: greater_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def greater_equal(x1, x2):
"""
Return (x1 >= x2) element-wise.
Unlike `numpy.greater_equal`, this comparison is performed by
first stripping whitespace characters from the end of the string.
This behavior is provided for backward-compatibility with
numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, less_equal, greater, less
"""
return compare_chararrays(x1, x2, '>=', True)
示例13: less_equal
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def less_equal(x1, x2):
"""
Return (x1 <= x2) element-wise.
Unlike `numpy.less_equal`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, greater, less
"""
return compare_chararrays(x1, x2, '<=', True)
示例14: greater
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def greater(x1, x2):
"""
Return (x1 > x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, less
"""
return compare_chararrays(x1, x2, '>', True)
示例15: less
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import equal [as 別名]
def less(x1, x2):
"""
Return (x1 < x2) element-wise.
Unlike `numpy.greater`, this comparison is performed by first
stripping whitespace characters from the end of the string. This
behavior is provided for backward-compatibility with numarray.
Parameters
----------
x1, x2 : array_like of str or unicode
Input arrays of the same shape.
Returns
-------
out : ndarray or bool
Output array of bools, or a single bool if x1 and x2 are scalars.
See Also
--------
equal, not_equal, greater_equal, less_equal, greater
"""
return compare_chararrays(x1, x2, '<', True)