本文整理匯總了Python中numpy.einsum方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.einsum方法的具體用法?Python numpy.einsum怎麽用?Python numpy.einsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.einsum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: validate_and_fill_geometry
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def validate_and_fill_geometry(geom=None, tooclose=0.1, copy=True):
"""Check `geom` for overlapping atoms. Return flattened"""
npgeom = np.array(geom, copy=copy, dtype=np.float).reshape((-1, 3))
# Upper triangular
metric = tooclose ** 2
tooclose_inds = []
for x in range(npgeom.shape[0]):
diffs = npgeom[x] - npgeom[x + 1 :]
dists = np.einsum("ij,ij->i", diffs, diffs)
# Record issues
if np.any(dists < metric):
indices = np.where(dists < metric)[0]
tooclose_inds.extend([(x, y, dist) for y, dist in zip(indices + x + 1, dists[indices] ** 0.5)])
if tooclose_inds:
raise ValidationError(
"""Following atoms are too close: {}""".format([(i, j, dist) for i, j, dist in tooclose_inds])
)
return {"geom": npgeom.reshape((-1))}
示例2: generate_inflate
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def generate_inflate(cloth):
"""Blow it up baby!"""
tri_nor = cloth.normals #* cloth.ob.modeling_cloth_inflate # non-unit calculated by tri_normals_in_place() per each triangle
#tri_nor /= np.einsum("ij, ij->i", tri_nor, tri_nor)[:, nax]
# reshape for add.at
shape = cloth.inflate.shape
cloth.inflate += tri_nor[:, nax] * cloth.ob.modeling_cloth_inflate# * cloth.tri_mix
cloth.inflate.shape = (shape[0] * 3, 3)
cloth.inflate *= cloth.tri_mix
np.add.at(cloth.vel, cloth.tridex.ravel(), cloth.inflate)
cloth.inflate.shape = shape
cloth.inflate *= 0
示例3: tda_denisty_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def tda_denisty_matrix(td, state_id):
'''
Taking the TDA amplitudes as the CIS coefficients, calculate the density
matrix (in AO basis) of the excited states
'''
cis_t1 = td.xy[state_id][0]
dm_oo =-np.einsum('ia,ka->ik', cis_t1.conj(), cis_t1)
dm_vv = np.einsum('ia,ic->ac', cis_t1, cis_t1.conj())
# The ground state density matrix in mo_basis
mf = td._scf
dm = np.diag(mf.mo_occ)
# Add CIS contribution
nocc = cis_t1.shape[0]
dm[:nocc,:nocc] += dm_oo * 2
dm[nocc:,nocc:] += dm_vv * 2
# Transform density matrix to AO basis
mo = mf.mo_coeff
dm = np.einsum('pi,ij,qj->pq', mo, dm, mo.conj())
return dm
# Density matrix for the 3rd excited state
示例4: ss
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def ss(mol):
n = mol.nao_nr()
mat1 = mol.intor('int2e_ip1ip2_sph').reshape(3,3,n,n,n,n) # <nabla1 nabla2 | 1 2>
mat2 =-mat1.transpose(0,1,2,3,5,4) # <nabla1 2 | 1 nabla2>
mat3 =-mat2.transpose(1,0,3,2,4,5) # <1 nabla2 | nabla1 2>
mat4 = mat1.transpose(0,1,3,2,5,4) # <1 2 | nabla1 nabla2>
mat = mat1 - mat2 - mat3 + mat4
# Fermi contact term
h_fc = mol.intor('int4c1e').reshape(nao,nao,nao,nao) * (4*numpy.pi/3)
mat[0,0] -= h_fc
mat[1,1] -= h_fc
mat[2,2] -= h_fc
s = lib.PauliMatrices * .5
# wxyz are the spin indices, ijkl are the AO indicies
alpha = 137.036
fac = alpha ** 2 / 2
mat = numpy.einsum('swx,tyz,stijkl->wxyzijkl', s[:,0,0], s[:,0,0], mat) * fac
return mat
示例5: force
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def force(dm):
# The interaction between QM atoms and MM particles
# \sum_K d/dR (1/|r_K-R|) = \sum_K (r_K-R)/|r_K-R|^3
qm_coords = mol.atom_coords()
qm_charges = mol.atom_charges()
dr = qm_coords[:,None,:] - coords
r = numpy.linalg.norm(dr, axis=2)
g = numpy.einsum('r,R,rRx,rR->Rx', qm_charges, charges, dr, r**-3)
# The interaction between electron density and MM particles
# d/dR <i| (1/|r-R|) |j> = <i| d/dR (1/|r-R|) |j> = <i| -d/dr (1/|r-R|) |j>
# = <d/dr i| (1/|r-R|) |j> + <i| (1/|r-R|) |d/dr j>
for i, q in enumerate(charges):
with mol.with_rinv_origin(coords[i]):
v = mol.intor('int1e_iprinv')
f =(numpy.einsum('ij,xji->x', dm, v) +
numpy.einsum('ij,xij->x', dm, v.conj())) * -q
g[i] += f
# Force = -d/dR
return -g
# The force from HF electron density
# Be careful with the unit of the MM particle coordinates. The gradients are
# computed in the atomic unit.
示例6: myump2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def myump2(mol, mo_energy, mo_coeff, mo_occ):
o = numpy.hstack((mo_coeff[0][:,mo_occ[0]>0] ,mo_coeff[1][:,mo_occ[1]>0]))
v = numpy.hstack((mo_coeff[0][:,mo_occ[0]==0],mo_coeff[1][:,mo_occ[1]==0]))
eo = numpy.hstack((mo_energy[0][mo_occ[0]>0] ,mo_energy[1][mo_occ[1]>0]))
ev = numpy.hstack((mo_energy[0][mo_occ[0]==0],mo_energy[1][mo_occ[1]==0]))
no = o.shape[1]
nv = v.shape[1]
noa = sum(mo_occ[0]>0)
nva = sum(mo_occ[0]==0)
eri = ao2mo.general(mol, (o,v,o,v)).reshape(no,nv,no,nv)
eri[:noa,nva:] = eri[noa:,:nva] = eri[:,:,:noa,nva:] = eri[:,:,noa:,:nva] = 0
g = eri - eri.transpose(0,3,2,1)
eov = eo.reshape(-1,1) - ev.reshape(-1)
de = 1/(eov.reshape(-1,1) + eov.reshape(-1)).reshape(g.shape)
emp2 = .25 * numpy.einsum('iajb,iajb,iajb->', g, g, de)
return emp2
示例7: hcore_grad_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def hcore_grad_generator(x2cobj, mol=None):
'''nuclear gradients of 1-component X2c hcore Hamiltonian (spin-free part only)
'''
if mol is None: mol = x2cobj.mol
xmol, contr_coeff = x2cobj.get_xmol(mol)
if x2cobj.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp')
s21 = gto.intor_cross('int1e_ovlp', xmol, mol)
contr_coeff = lib.cho_solve(s22, s21)
get_h1_xmol = gen_sf_hfw(xmol, x2cobj.approx)
def hcore_deriv(atm_id):
h1 = get_h1_xmol(atm_id)
if contr_coeff is not None:
h1 = lib.einsum('pi,xpq,qj->xij', contr_coeff, h1, contr_coeff)
return numpy.asarray(h1)
return hcore_deriv
示例8: _invsqrt2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def _invsqrt2(a0, a1i, a1j, a2ij):
'''Solving first order derivative of x^2 = a^{-1}'''
w, v = scipy.linalg.eigh(a0)
w = 1./numpy.sqrt(w)
a1i = reduce(numpy.dot, (v.conj().T, a1i, v))
x1i = numpy.einsum('i,ij,j->ij', w**2, a1i, w**2) / (w[:,None] + w)
a1j = reduce(numpy.dot, (v.conj().T, a1j, v))
x1j = numpy.einsum('i,ij,j->ij', w**2, a1j, w**2) / (w[:,None] + w)
a2ij = reduce(numpy.dot, (v.conj().T, a2ij, v))
tmp = (a1i*w**2).dot(a1j)
a2ij -= tmp + tmp.conj().T
a2ij = -numpy.einsum('i,ij,j->ij', w**2, a2ij, w**2)
tmp = x1i.dot(x1j)
a2ij -= tmp + tmp.conj().T
x2 = a2ij / (w[:,None] + w)
x2 = reduce(numpy.dot, (v, x2, v.conj().T))
return x2
示例9: get_x1
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def get_x1(mol, ia):
h0, s0 = get_h0_s0(mol)
h1, s1 = get_h1_s1(mol, ia)
e0, c0 = scipy.linalg.eigh(h0, s0)
nao = mol.nao_nr()
cl0 = c0[:nao,nao:]
cs0 = c0[nao:,nao:]
x0 = scipy.linalg.solve(cl0.T, cs0.T).T
h1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), h1, c0[:,nao:])
s1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), s1, c0[:,nao:])
epi = e0[:,None] - e0[nao:]
degen_mask = abs(epi) < 1e-7
epi[degen_mask] = 1e200
c1 = (h1 - s1 * e0[nao:]) / -epi
c1[:,degen_mask] = -.5 * s1[:,degen_mask]
c1 = numpy.einsum('pq,xqi->xpi', c0, c1)
cl1 = c1[:,:nao]
cs1 = c1[:,nao:]
x1 = [scipy.linalg.solve(cl0.T, (cs1[i] - x0.dot(cl1[i])).T).T
for i in range(3)]
return numpy.asarray(x1)
示例10: hcore_hess_generator
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def hcore_hess_generator(x2cobj, mol=None):
'''nuclear gradients of 1-component X2c hcore Hamiltonian (spin-free part only)
'''
if mol is None: mol = x2cobj.mol
xmol, contr_coeff = x2cobj.get_xmol(mol)
if x2cobj.basis is not None:
s22 = xmol.intor_symmetric('int1e_ovlp')
s21 = gto.intor_cross('int1e_ovlp', xmol, mol)
contr_coeff = lib.cho_solve(s22, s21)
get_h1_xmol = gen_sf_hfw(xmol, x2cobj.approx)
def hcore_deriv(ia, ja):
h1 = get_h1_xmol(ia, ja)
if contr_coeff is not None:
h1 = lib.einsum('pi,xypq,qj->xyij', contr_coeff, h1, contr_coeff)
return numpy.asarray(h1)
return hcore_deriv
示例11: normalize_dm_
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def normalize_dm_(mf, dm):
'''
Scale density matrix to make it produce the correct number of electrons.
'''
cell = mf.cell
if isinstance(dm, np.ndarray) and dm.ndim == 2:
ne = np.einsum('ij,ji->', dm, mf.get_ovlp(cell)).real
else:
ne = np.einsum('xij,ji->', dm, mf.get_ovlp(cell)).real
if abs(ne - cell.nelectron).sum() > 1e-7:
logger.debug(mf, 'Big error detected in the electron number '
'of initial guess density matrix (Ne/cell = %g)!\n'
' This can cause huge error in Fock matrix and '
'lead to instability in SCF for low-dimensional '
'systems.\n DM is normalized wrt the number '
'of electrons %s', ne, cell.nelectron)
dm *= cell.nelectron / ne
return dm
示例12: spin_square
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def spin_square(self, mo_coeff=None, s=None):
'''Treating the k-point sampling wfn as a giant Slater determinant,
the spin_square value is the <S^2> of the giant determinant.
'''
nkpts = len(self.kpts)
if mo_coeff is None:
mo_a = [self.mo_coeff[0][k][:,self.mo_occ[0][k]>0] for k in range(nkpts)]
mo_b = [self.mo_coeff[1][k][:,self.mo_occ[1][k]>0] for k in range(nkpts)]
else:
mo_a, mo_b = mo_coeff
if s is None:
s = self.get_ovlp()
nelec_a = sum([mo_a[k].shape[1] for k in range(nkpts)])
nelec_b = sum([mo_b[k].shape[1] for k in range(nkpts)])
ssxy = (nelec_a + nelec_b) * .5
for k in range(nkpts):
sij = reduce(np.dot, (mo_a[k].T.conj(), s[k], mo_b[k]))
ssxy -= np.einsum('ij,ij->', sij.conj(), sij).real
ssz = (nelec_b-nelec_a)**2 * .25
ss = ssxy + ssz
s = np.sqrt(ss+.25) - .5
return ss, s*2+1
示例13: energy_elec
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def energy_elec(mf, dm_kpts=None, h1e_kpts=None, vhf_kpts=None):
'''Following pyscf.scf.hf.energy_elec()
'''
if dm_kpts is None: dm_kpts = mf.make_rdm1()
if h1e_kpts is None: h1e_kpts = mf.get_hcore()
if vhf_kpts is None: vhf_kpts = mf.get_veff(mf.cell, dm_kpts)
nkpts = len(dm_kpts)
e1 = 1./nkpts * np.einsum('kij,kji', dm_kpts, h1e_kpts)
e_coul = 1./nkpts * np.einsum('kij,kji', dm_kpts, vhf_kpts) * 0.5
mf.scf_summary['e1'] = e1.real
mf.scf_summary['e2'] = e_coul.real
logger.debug(mf, 'E1 = %s E_coul = %s', e1, e_coul)
if CHECK_COULOMB_IMAG and abs(e_coul.imag > mf.cell.precision*10):
logger.warn(mf, "Coulomb energy has imaginary part %s. "
"Coulomb integrals (e-e, e-N) may not converge !",
e_coul.imag)
return (e1+e_coul).real, e_coul.real
示例14: _gamma1_intermediates
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def _gamma1_intermediates(mp, t2=None):
# Memory optimization should be here
if t2 is None:
t2 = mp.t2
if t2 is None:
raise NotImplementedError("Run kmp2.kernel with `with_t2=True`")
nmo = mp.nmo
nocc = mp.nocc
nvir = nmo - nocc
nkpts = mp.nkpts
dtype = t2.dtype
dm1occ = np.zeros((nkpts, nocc, nocc), dtype=dtype)
dm1vir = np.zeros((nkpts, nvir, nvir), dtype=dtype)
for ki in range(nkpts):
for kj in range(nkpts):
for ka in range(nkpts):
kb = mp.khelper.kconserv[ki, ka, kj]
dm1vir[kb] += einsum('ijax,ijay->yx', t2[ki][kj][ka].conj(), t2[ki][kj][ka]) * 2 -\
einsum('ijax,ijya->yx', t2[ki][kj][ka].conj(), t2[ki][kj][kb])
dm1occ[kj] += einsum('ixab,iyab->xy', t2[ki][kj][ka].conj(), t2[ki][kj][ka]) * 2 -\
einsum('ixab,iyba->xy', t2[ki][kj][ka].conj(), t2[ki][kj][kb])
return -dm1occ, dm1vir
示例15: make_h3_2_5
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import einsum [as 別名]
def make_h3_2_5() -> Tuple[RestrictedHartreeFockObjective, of.MolecularData, np.
ndarray, np.ndarray, np.ndarray]:
# load the molecule from moelcular data
h3_2_5_path = os.path.join(
hfvqe.__path__[0],
'molecular_data/hydrogen_chains/h_3_p_sto-3g/bond_distance_2.5')
molfile = os.path.join(h3_2_5_path,
'H3_plus_sto-3g_singlet_linear_r-2.5.hdf5')
molecule = of.MolecularData(filename=molfile)
molecule.load()
S = np.load(os.path.join(h3_2_5_path, 'overlap.npy'))
Hcore = np.load(os.path.join(h3_2_5_path, 'h_core.npy'))
TEI = np.load(os.path.join(h3_2_5_path, 'tei.npy'))
_, X = sp.linalg.eigh(Hcore, S)
obi = of.general_basis_change(Hcore, X, (1, 0))
tbi = np.einsum('psqr', of.general_basis_change(TEI, X, (1, 0, 1, 0)))
molecular_hamiltonian = generate_hamiltonian(obi, tbi,
molecule.nuclear_repulsion)
rhf_objective = RestrictedHartreeFockObjective(molecular_hamiltonian,
molecule.n_electrons)
scipy_result = rhf_minimization(rhf_objective)
return rhf_objective, molecule, scipy_result.x, obi, tbi