本文整理匯總了Python中numpy.dsplit方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.dsplit方法的具體用法?Python numpy.dsplit怎麽用?Python numpy.dsplit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.dsplit方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: preprocess
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def preprocess(self, image_path: Path) -> None:
"""Process single mask.
Args:
image_path (Path): path to the mask
"""
image = imread(image_path, rootpath=str(self.in_dir))
heigth, width = image.shape[:2]
mask = np.zeros((heigth, width, len(self.index2color)), dtype=np.uint8)
for index, color in self.index2color.items():
mask[np.all((image == color), axis=-1), index] = 255
target_path = self.out_dir / f"{image_path.stem}.tiff"
target_path.parent.mkdir(parents=True, exist_ok=True)
mimwrite_with_meta(
target_path, np.dsplit(mask, mask.shape[2]), {"compress": 9}
)
示例2: rgb_to_luminance
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def rgb_to_luminance(image: np.ndarray):
"Read the first three color planes and return a grayscale image."
assert image.shape[2] >= 3
r, g, b = np.dsplit(image[:,:,:3], image.shape[2])
return io.reshape(0.2125 * r + 0.7154 * g + 0.0721 * b)
示例3: extract_alpha
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def extract_alpha(image: np.ndarray) -> np.ndarray:
"""Extract the alpha plane from an RGBA image.
Note that this returns a copy, not a view. To manipulate the pixels
in a <i>view</i> of the alpha plane, simply make a numpy slice, as
in: <code>alpha_view = myimage[:,:,3]</code>.
"""
assert len(image.shape) == 3 and image.shape[2] == 4
return np.dsplit(image, 4)[3].copy()
示例4: extract_rgb
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def extract_rgb(image: np.ndarray) -> np.ndarray:
"""Extract the RGB planes from an RGBA image.
Note that this returns a copy. If you wish to obtain a view that
allows mutating pixels, simply use slicing instead. For
example, to invert the colors of an image while leaving alpha
intact, you can do:
<code>myimage[:,:,:3] = 1.0 - myimage[:,:,:3]</code>.
"""
assert len(image.shape) == 3 and image.shape[2] >= 3
planes = np.dsplit(image, image.shape[2])
return np.dstack(planes[:3])
示例5: to_planar
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def to_planar(image: np.ndarray) -> np.ndarray:
"""Convert a row-major image into a channel-major image.
This creates a copy, not a view.
"""
assert len(image.shape) == 3
result = np.array(np.dsplit(image, image.shape[2]))
return np.reshape(result, result.shape[:-1])
示例6: visualize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def visualize(datagen, batch_size, view_size=4):
"""
Read the batch from 'datagen' and display 'view_size' number of
of images and their corresponding Ground Truth
"""
def prep_imgs(img, ann):
cmap = plt.get_cmap('viridis')
# cmap may randomly fails if of other types
ann = ann.astype('float32')
ann_chs = np.dsplit(ann, ann.shape[-1])
for i, ch in enumerate(ann_chs):
ch = np.squeeze(ch)
# normalize to -1 to 1 range else
# cmap may behave stupidly
ch = ch / (np.max(ch) - np.min(ch) + 1.0e-16)
# take RGB from RGBA heat map
ann_chs[i] = cmap(ch)[...,:3]
img = img.astype('float32') / 255.0
prepped_img = np.concatenate([img] + ann_chs, axis=1)
return prepped_img
assert view_size <= batch_size, 'Number of displayed images must <= batch size'
ds = RepeatedData(datagen, -1)
ds.reset_state()
for imgs, segs in ds.get_data():
for idx in range (0, view_size):
displayed_img = prep_imgs(imgs[idx], segs[idx])
plt.subplot(view_size, 1, idx+1)
plt.imshow(displayed_img)
plt.show()
return
###
###########################################################################
示例7: dsplit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def dsplit(ary, indices_or_sections):
"""Splits an array into multiple sub arrays along the third axis.
This is equivalent to ``split`` with ``axis=2``.
.. seealso:: :func:`cupy.split` for more detail, :func:`numpy.dsplit`
"""
if ary.ndim <= 2:
raise ValueError('Cannot dsplit an array with less than 3 dimensions')
return split(ary, indices_or_sections, 2)
示例8: vsplit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def vsplit(ary, indices_or_sections):
"""Splits an array into multiple sub arrays along the first axis.
This is equivalent to ``split`` with ``axis=0``.
.. seealso:: :func:`cupy.split` for more detail, :func:`numpy.dsplit`
"""
if ary.ndim <= 1:
raise ValueError('Cannot vsplit an array with less than 2 dimensions')
return split(ary, indices_or_sections, 0)
示例9: cvtColor
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def cvtColor(image):
"converts color from BGR to RGB and BGRA to RGBA and vice versa"
if len(image.shape)>=3:
np8_image = image.astype(np.uint8)
if image.shape[2] == 3:
b, g, r = np.dsplit(np8_image, np8_image.shape[-1])
return np.dstack([r, g, b])
elif image.shape[2] == 4:
b, g, r, a = np.dsplit(np8_image, np8_image.shape[-1])
return np.dstack([r, g, b, a])
return image
#================================================================
# LZW compression algorithms
#================================================================
示例10: _rpc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def _rpc(self, x):
L, P, H = np.dsplit(x, 3)
return np.dstack([np.ones((x.shape[0], x.shape[1]), dtype=np.float32), L, P, H, L*P, L*H, P*H, L**2, P**2, H**2,
L*P*H, L**3, L*(P**2), L*(H**2), (L**2)*P, P**3, P*(H**2),
(L**2)*H, (P**2)*H, H**3])
示例11: char2wordBB
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def char2wordBB(self, charBB, text):
"""
Converts character bounding-boxes to word-level
bounding-boxes.
charBB : 2x4xn matrix of BB coordinates
text : the text string
output : 2x4xm matrix of BB coordinates,
where, m == number of words.
"""
wrds = text.split()
bb_idx = np.r_[0, np.cumsum([len(w) for w in wrds])]
wordBB = np.zeros((2,4,len(wrds)), 'float32')
for i in xrange(len(wrds)):
cc = charBB[:,:,bb_idx[i]:bb_idx[i+1]]
# fit a rotated-rectangle:
# change shape from 2x4xn_i -> (4*n_i)x2
cc = np.squeeze(np.concatenate(np.dsplit(cc,cc.shape[-1]),axis=1)).T.astype('float32')
rect = cv2.minAreaRect(cc.copy())
box = np.array(cv2.cv.BoxPoints(rect))
# find the permutation of box-coordinates which
# are "aligned" appropriately with the character-bb.
# (exhaustive search over all possible assignments):
cc_tblr = np.c_[cc[0,:],
cc[-3,:],
cc[-2,:],
cc[3,:]].T
perm4 = np.array(list(itertools.permutations(np.arange(4))))
dists = []
for pidx in xrange(perm4.shape[0]):
d = np.sum(np.linalg.norm(box[perm4[pidx],:]-cc_tblr,axis=1))
dists.append(d)
wordBB[:,:,i] = box[perm4[np.argmin(dists)],:].T
return wordBB
示例12: _ros_read_images
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def _ros_read_images(self, stream_buffer, number, staleness_limit = 10.):
""" Reads images from a stream buffer
Parameters
----------
stream_buffer : string
absolute path to the image buffer service
number : int
The number of frames to get. Must be less than the image buffer service's
current buffer size
staleness_limit : float, optional
Max value of how many seconds old the oldest image is. If the oldest image
grabbed is older than this value, a RuntimeError is thrown.
If None, staleness is ignored.
Returns
-------
List of nump.ndarray objects, each one an image
Images are in reverse chronological order (newest first)
"""
rospy.wait_for_service(stream_buffer, timeout = self.timeout)
ros_image_buffer = rospy.ServiceProxy(stream_buffer, ImageBuffer)
ret = ros_image_buffer(number, 1)
if not staleness_limit == None:
if ret.timestamps[-1] > staleness_limit:
raise RuntimeError("Got data {0} seconds old, more than allowed {1} seconds"
.format(ret.timestamps[-1], staleness_limit))
data = ret.data.reshape(ret.data_dim1, ret.data_dim2, ret.data_dim3).astype(ret.dtype)
# Special handling for 1 element, since dstack's behavior is different
if number == 1:
return [data]
return np.dsplit(data, number)
示例13: test_dsplit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def test_dsplit(self):
self.check(np.dsplit, [1])
示例14: testSplitExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dsplit [as 別名]
def testSplitExecution(self):
x = arange(48, chunk_size=3).reshape(2, 3, 8)
ss = split(x, 4, axis=2)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.split(np.arange(48).reshape(2, 3, 8), 4, axis=2)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r, e) for r, e in zip(res, expected)]
ss = split(x, [3, 5, 6, 10], axis=2)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r, e) for r, e in zip(res, expected)]
# hsplit
x = arange(120, chunk_size=3).reshape(2, 12, 5)
ss = hsplit(x, 4)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.hsplit(np.arange(120).reshape(2, 12, 5), 4)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r, e) for r, e in zip(res, expected)]
# vsplit
x = arange(48, chunk_size=3).reshape(8, 3, 2)
ss = vsplit(x, 4)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.vsplit(np.arange(48).reshape(8, 3, 2), 4)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r, e) for r, e in zip(res, expected)]
# dsplit
x = arange(48, chunk_size=3).reshape(2, 3, 8)
ss = dsplit(x, 4)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.dsplit(np.arange(48).reshape(2, 3, 8), 4)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r, e) for r, e in zip(res, expected)]
x_data = sps.random(12, 8, density=.1)
x = tensor(x_data, chunk_size=3)
ss = split(x, 4, axis=0)
res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss]
expected = np.split(x_data.toarray(), 4, axis=0)
self.assertEqual(len(res), len(expected))
[np.testing.assert_equal(r.toarray(), e) for r, e in zip(res, expected)]