當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.dot方法代碼示例

本文整理匯總了Python中numpy.dot方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.dot方法的具體用法?Python numpy.dot怎麽用?Python numpy.dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.dot方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: similarity_label

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def similarity_label(self, words, normalization=True):
        """
        you can calculate more than one word at the same time.
        """
        if self.model==None:
            raise Exception('no model.')
        if isinstance(words, string_types):
            words=[words]
        vectors=np.transpose(self.model.wv.__getitem__(words))
        if normalization:
            unit_vector=unitvec(vectors,ax=0) # 這樣寫比原來那樣速度提升一倍
            #unit_vector=np.zeros((len(vectors),len(words)))
            #for i in range(len(words)):
            #    unit_vector[:,i]=matutils.unitvec(vectors[:,i])
            dists=np.dot(self.Label_vec_u, unit_vector)
        else:
            dists=np.dot(self.Label_vec, vectors)
        return dists 
開發者ID:Coldog2333,項目名稱:Financial-NLP,代碼行數:20,代碼來源:NLP.py

示例2: classical_mds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def classical_mds(self, D):
        ''' 
        Classical multidimensional scaling

        Parameters
        ----------
        D : square 2D ndarray
            Euclidean Distance Matrix (matrix containing squared distances between points
        '''

        # Apply MDS algorithm for denoising
        n = D.shape[0]
        J = np.eye(n) - np.ones((n,n))/float(n)
        G = -0.5*np.dot(J, np.dot(D, J))

        s, U = np.linalg.eig(G)

        # we need to sort the eigenvalues in decreasing order
        s = np.real(s)
        o = np.argsort(s)
        s = s[o[::-1]]
        U = U[:,o[::-1]]

        S = np.diag(s)[0:self.dim,:]
        self.X = np.dot(np.sqrt(S),U.T) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:point_cloud.py

示例3: flatten

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def flatten(self, ind):
        '''
        Transform the set of points so that the subset of markers given as argument is
        as close as flat (wrt z-axis) as possible.

        Parameters
        ----------
        ind : list of bools
            Lists of marker indices that should be all in the same subspace
        '''

        # Transform references to indices if needed
        ind = [self.key2ind(s) for s in ind]

        # center point cloud around the group of indices
        centroid = self.X[:,ind].mean(axis=1, keepdims=True)
        X_centered = self.X - centroid

        # The rotation is given by left matrix of SVD
        U,S,V = la.svd(X_centered[:,ind], full_matrices=False)

        self.X = np.dot(U.T, X_centered) + centroid 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:24,代碼來源:point_cloud.py

示例4: gen_visibility

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def gen_visibility(alphak, phi_k, pos_mic_x, pos_mic_y):
    """
    generate visibility from the Dirac parameter and microphone array layout
    :param alphak: Diracs' amplitudes
    :param phi_k: azimuths
    :param pos_mic_x: a vector that contains microphones' x coordinates
    :param pos_mic_y: a vector that contains microphones' y coordinates
    :return:
    """
    xk, yk = polar2cart(1, phi_k)
    num_mic = pos_mic_x.size
    visi = np.zeros((num_mic, num_mic), dtype=complex)
    for q in xrange(num_mic):
        p_x_outer = pos_mic_x[q]
        p_y_outer = pos_mic_y[q]
        for qp in xrange(num_mic):
            p_x_qqp = p_x_outer - pos_mic_x[qp]  # a scalar
            p_y_qqp = p_y_outer - pos_mic_y[qp]  # a scalar
            visi[qp, q] = np.dot(np.exp(-1j * (xk * p_x_qqp + yk * p_y_qqp)), alphak)
    return visi 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:22,代碼來源:generators.py

示例5: compute_mode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def compute_mode(self):
        """
        Pre-compute mode vectors from candidate locations (in spherical 
        coordinates).
        """
        if self.num_loc is None:
            raise ValueError('Lookup table appears to be empty. \
                Run build_lookup().')
        self.mode_vec = np.zeros((self.max_bin,self.M,self.num_loc), 
            dtype='complex64')
        if (self.nfft % 2 == 1):
            raise ValueError('Signal length must be even.')
        f = 1.0 / self.nfft * np.linspace(0, self.nfft / 2, self.max_bin) \
            * 1j * 2 * np.pi
        for i in range(self.num_loc):
            p_s = self.loc[:, i]
            for m in range(self.M):
                p_m = self.L[:, m]
                if (self.mode == 'near'):
                    dist = np.linalg.norm(p_m - p_s, axis=1)
                if (self.mode == 'far'):
                    dist = np.dot(p_s, p_m)
                # tau = np.round(self.fs*dist/self.c) # discrete - jagged
                tau = self.fs * dist / self.c  # "continuous" - smoother
                self.mode_vec[:, m, i] = np.exp(f * tau) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:doa.py

示例6: cov_mtx_est

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def cov_mtx_est(y_mic):
    """
    estimate covariance matrix
    :param y_mic: received signal (complex based band representation) at microphones
    :return:
    """
    # Q: total number of microphones
    # num_snapshot: number of snapshots used to estimate the covariance matrix
    Q, num_snapshot = y_mic.shape
    cov_mtx = np.zeros((Q, Q), dtype=complex, order='F')
    for q in range(Q):
        y_mic_outer = y_mic[q, :]
        for qp in range(Q):
            y_mic_inner = y_mic[qp, :]
            cov_mtx[qp, q] = np.dot(y_mic_outer, y_mic_inner.T.conj())
    return cov_mtx / num_snapshot 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:18,代碼來源:tools_fri_doa_plane.py

示例7: mtx_updated_G

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def mtx_updated_G(phi_recon, M, mtx_amp2visi_ri, mtx_fri2visi_ri):
    """
    Update the linear transformation matrix that links the FRI sequence to the
    visibilities by using the reconstructed Dirac locations.
    :param phi_recon: the reconstructed Dirac locations (azimuths)
    :param M: the Fourier series expansion is between -M to M
    :param p_mic_x: a vector that contains microphones' x-coordinates
    :param p_mic_y: a vector that contains microphones' y-coordinates
    :param mtx_freq2visi: the linear mapping from Fourier series to visibilities
    :return:
    """
    L = 2 * M + 1
    ms_half = np.reshape(np.arange(-M, 1, step=1), (-1, 1), order='F')
    phi_recon = np.reshape(phi_recon, (1, -1), order='F')
    mtx_amp2freq = np.exp(-1j * ms_half * phi_recon)  # size: (M + 1) x K
    mtx_amp2freq_ri = np.vstack((mtx_amp2freq.real, mtx_amp2freq.imag[:-1, :]))  # size: (2M + 1) x K
    mtx_fri2amp_ri = linalg.lstsq(mtx_amp2freq_ri, np.eye(L))[0]
    # projection mtx_freq2visi to the null space of mtx_fri2amp
    mtx_null_proj = np.eye(L) - np.dot(mtx_fri2amp_ri.T,
                                       linalg.lstsq(mtx_fri2amp_ri.T, np.eye(L))[0])
    G_updated = np.dot(mtx_amp2visi_ri, mtx_fri2amp_ri) + \
                np.dot(mtx_fri2visi_ri, mtx_null_proj)
    return G_updated 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:25,代碼來源:tools_fri_doa_plane.py

示例8: prep_graph_display

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def prep_graph_display(states, options={}):
    clean_states = [x.tolist() for x in states]
    nstr, nid, nstate, estr = states
    flat_nid = nid.reshape([-1,nid.shape[-1]])
    flat_estr = estr.reshape([-1,estr.shape[-1]])
    flat_estr = flat_estr / (np.linalg.norm(flat_estr, axis=1, keepdims=True) + 1e-8)

    num_unique_colors = nid.shape[-1] + estr.shape[-1]
    id_denom = max(nid.shape[-1] - 1, 1)
    id_project_mat = np.array([list(cm_rainbow(i/id_denom)[:3]) for i in range(0,nid.shape[-1])])
    estr_denom = estr.shape[-1]
    estr_project_mat = np.array([list(cm_rainbow((i+0.37)/estr_denom)[:3]) for i in range(estr.shape[-1])])
    node_colors = np.dot(flat_nid, id_project_mat)
    edge_colors = np.dot(flat_estr, estr_project_mat)

    colormap = {
        "node_id": node_colors.reshape(nid.shape[:-1] + (3,)).tolist(),
        "edge_type": edge_colors.reshape(estr.shape[:-1] + (3,)).tolist(),
    }

    return json.dumps({
        "states":clean_states,
        "colormap":colormap,
        "options":options
    }) 
開發者ID:hexahedria,項目名稱:gated-graph-transformer-network,代碼行數:27,代碼來源:display_graph.py

示例9: Riz_mode

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def Riz_mode(model:Model,n,F):
    """
    Solve the Riz mode of the MDOF system\n
    n: number of modes to extract\n
    F: spacial load pattern
    """
    #            alpha=np.array(mode).T
#            #Grum-Schmidt procedure            
#            beta=[]
#            for i in range(len(mode)):
#                beta_i=alpha[i]
#                for j in range(i):
#                    beta_i-=np.dot(alpha[i],beta[j])/np.dot(alpha[j],alpha[j])*beta[j]
#                beta.append(beta_i)
#            mode_=np.array(beta).T
    pass 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:18,代碼來源:dynamic.py

示例10: spectrum_analysis

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def spectrum_analysis(model,n,spec):
    """
    sepctrum analysis
    
    params:
        n: number of modes to use\n
        spec: a list of tuples (period,acceleration response)
    """
    freq,mode=eigen_mode(model,n)
    M_=np.dot(mode.T,model.M)
    M_=np.dot(M_,mode)
    K_=np.dot(mode.T,model.K)
    K_=np.dot(K_,mode)
    C_=np.dot(mode.T,model.C)
    C_=np.dot(C_,mode)
    d_=[]
    for (m_,k_,c_) in zip(M_.diag(),K_.diag(),C_.diag()):
        sdof=SDOFSystem(m_,k_)
        T=sdof.omega_d()
        d_.append(np.interp(T,spec[0],spec[1]*m_))
    d=np.dot(d_,mode)
    #CQC
    return d 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:25,代碼來源:dynamic.py

示例11: resolve_modal_displacement

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def resolve_modal_displacement(self,node_id,k): 
        """
        resolve modal node displacement.
        
        params:
            node_id: int.
            k: order of vibration mode.
        return:
            6-array of local nodal displacement.
        """
        if not self.is_solved:
            raise Exception('The model has to be solved first.')
        if node_id in self.__nodes.keys():
            node=self.__nodes[node_id]
            T=node.transform_matrix
            return T.dot(self.mode_[node_id*6:node_id*6+6,k-1]).reshape(6)
        else:
            raise Exception("The node doesn't exists.") 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:20,代碼來源:__init__.py

示例12: _BtDB

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def _BtDB(self,s,r):
        """
        dot product of B^T, D, B
        params:
            s,r:natural position of evalue point.2-array.
        returns:
            3x3 matrix.
        """
        print(self._B(s,r).transpose(2,0,1).shape)
        print(
            np.matmul(
                np.dot(self._B(s,r).T,self._D),
                self._B(s,r).transpose(2,0,1)).shape
            )
        print(self._D.shape)
       
        
        return np.matmul(np.dot(self._B(s,r).T,self._D),self._B(s,r).transpose(2,0,1)).transpose(1,2,0) 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:20,代碼來源:element.py

示例13: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def __init__(self,origin, pt1, pt2, name=None):
        """
        origin: 3x1 vector
        pt1: 3x1 vector
        pt2: 3x1 vector
        """
        self.__origin=origin    
        vec1 = np.array([pt1[0] - origin[0] , pt1[1] - origin[1] , pt1[2] - origin[2]])
        vec2 = np.array([pt2[0] - origin[0] , pt2[1] - origin[1] , pt2[2] - origin[2]])
        cos = np.dot(vec1, vec2)/np.linalg.norm(vec1)/np.linalg.norm(vec2)
        if  cos == 1 or cos == -1:
            raise Exception("Three points should not in a line!!")        
        self.__x = vec1/np.linalg.norm(vec1)
        z = np.cross(vec1, vec2)
        self.__z = z/np.linalg.norm(z)
        self.__y = np.cross(self.z, self.x)
        self.__name=uuid.uuid1() if name==None else name 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:19,代碼來源:csys.py

示例14: set_by_3pts

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def set_by_3pts(self,origin, pt1, pt2):
        """
        origin: tuple 3
        pt1: tuple 3
        pt2: tuple 3
        """
        self.origin=origin    
        vec1 = np.array([pt1[0] - origin[0] , pt1[1] - origin[1] , pt1[2] - origin[2]])
        vec2 = np.array([pt2[0] - origin[0] , pt2[1] - origin[1] , pt2[2] - origin[2]])
        cos = np.dot(vec1, vec2)/np.linalg.norm(vec1)/np.linalg.norm(vec2)
        if  cos == 1 or cos == -1:
            raise Exception("Three points should not in a line!!")        
        self.x = vec1/np.linalg.norm(vec1)
        z = np.cross(vec1, vec2)
        self.z = z/np.linalg.norm(z)
        self.y = np.cross(self.z, self.x) 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:18,代碼來源:csys.py

示例15: predict

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import dot [as 別名]
def predict(self):
        """Predict state vector u and variance of uncertainty P (covariance).
            where,
            u: previous state vector
            P: previous covariance matrix
            F: state transition matrix
            Q: process noise matrix
        Equations:
            u'_{k|k-1} = Fu'_{k-1|k-1}
            P_{k|k-1} = FP_{k-1|k-1} F.T + Q
            where,
                F.T is F transpose
        Args:
            None
        Return:
            vector of predicted state estimate
        """
        # Predicted state estimate
        self.u = np.round(np.dot(self.F, self.u))
        # Predicted estimate covariance
        self.P = np.dot(self.F, np.dot(self.P, self.F.T)) + self.Q
        self.lastResult = self.u  # same last predicted result
        return self.u 
開發者ID:srianant,項目名稱:kalman_filter_multi_object_tracking,代碼行數:25,代碼來源:kalman_filter.py


注:本文中的numpy.dot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。