本文整理匯總了Python中numpy.divmod方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.divmod方法的具體用法?Python numpy.divmod怎麽用?Python numpy.divmod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.divmod方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_vmat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def get_vmat(mf, mfset, disp):
'''
computing <u|dVxc/dR|v>
'''
vmat=[]
mygrad = mf.nuc_grad_method()
ve = mygrad.get_veff() + mygrad.get_hcore() + mf.mol.intor("int1e_ipkin")
RESTRICTED = (ve.ndim==3)
aoslice = mf.mol.aoslice_by_atom()
for ki, (mf1, mf2) in enumerate(mfset):
atmid, axis = np.divmod(ki, 3)
p0, p1 = aoslice[atmid][2:]
vfull1 = mf1.get_veff() + mf1.get_hcore() - mf1.mol.intor_symmetric('int1e_kin') # <u+|V+|v+>
vfull2 = mf2.get_veff() + mf2.get_hcore() - mf2.mol.intor_symmetric('int1e_kin') # <u-|V-|v->
vfull = (vfull1 - vfull2)/disp # (<p+|V+|q+>-<p-|V-|q->)/dR
if RESTRICTED:
vfull[p0:p1] -= ve[axis,p0:p1]
vfull[:,p0:p1] -= ve[axis,p0:p1].T
else:
vfull[:,p0:p1] -= ve[:,axis,p0:p1]
vfull[:,:,p0:p1] -= ve[:,axis,p0:p1].transpose(0,2,1)
vmat.append(vfull)
return np.asarray(vmat)
示例2: enforce_pbc
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def enforce_pbc(lattvecs, epos):
"""Enforces periodic boundary conditions on a set of configs.
Args:
lattvecs: orthogonal lattice vectors defining 3D torus: (3,3)
init_epos: attempted new electron coordinates: (nconfig,3)
Returns:
final_epos: final electron coordinates with PBCs imposed: (nconfig,3)
wraparound: vector used to bring a given electron back to the simulation cell written in terms of lattvecs: (nconfig,3)
"""
# Writes epos in terms of (lattice vecs) fractional coordinates
recpvecs = np.linalg.inv(lattvecs)
epos_lvecs_coord = np.dot(epos, recpvecs)
# Finds position inside box and wraparound vectors (in lattice vector coordinates)
tmp = np.divmod(epos_lvecs_coord, 1)
wraparound = tmp[0]
final_epos = np.dot(tmp[1], lattvecs)
return final_epos, wraparound
示例3: test_float_remainder_exact
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for op in [floor_divide_and_remainder, np.divmod]:
for dt in np.typecodes['Float']:
msg = 'op: %s, dtype: %s' % (op.__name__, dt)
fa = a.astype(dt)
fb = b.astype(dt)
div, rem = op(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
示例4: test_float_remainder_roundoff
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for op in [floor_divide_and_remainder, np.divmod]:
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div, rem = op(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
示例5: node_label
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def node_label(subgraph):
# an implementation of the proposed double-radius node labeling (DRNL)
K = subgraph.shape[0]
subgraph_wo0 = subgraph[1:, 1:]
subgraph_wo1 = subgraph[[0]+range(2, K), :][:, [0]+range(2, K)]
dist_to_0 = ssp.csgraph.shortest_path(subgraph_wo0, directed=False, unweighted=True)
dist_to_0 = dist_to_0[1:, 0]
dist_to_1 = ssp.csgraph.shortest_path(subgraph_wo1, directed=False, unweighted=True)
dist_to_1 = dist_to_1[1:, 0]
d = (dist_to_0 + dist_to_1).astype(int)
d_over_2, d_mod_2 = np.divmod(d, 2)
labels = 1 + np.minimum(dist_to_0, dist_to_1).astype(int) + d_over_2 * (d_over_2 + d_mod_2 - 1)
labels = np.concatenate((np.array([1, 1]), labels))
labels[np.isinf(labels)] = 0
labels[labels>1e6] = 0 # set inf labels to 0
labels[labels<-1e6] = 0 # set -inf labels to 0
return labels
示例6: test_get_diag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def test_get_diag(dtype, num_charges, Ds, flow):
np.random.seed(10)
np_flow = -np.int((np.int(flow) - 0.5) * 2)
indices = [
Index(
BaseCharge(
np.random.randint(-2, 3, (num_charges, Ds[n])),
charge_types=[U1Charge] * num_charges), flow) for n in range(2)
]
arr = BlockSparseTensor.random(indices, dtype=dtype)
fused = fuse_charges(arr.flat_charges, arr.flat_flows)
inds = np.nonzero(fused == np.zeros((num_charges, 1), dtype=np.int16))[0]
# pylint: disable=no-member
left, _ = np.divmod(inds, Ds[1])
unique = np.unique(
np_flow * (indices[0]._charges[0].charges[:, left]), axis=1)
diagonal = diag(arr)
sparse_blocks, _, block_shapes = _find_diagonal_sparse_blocks(
arr.flat_charges, arr.flat_flows, 1)
data = np.concatenate([
np.diag(np.reshape(arr.data[sparse_blocks[n]], block_shapes[:, n]))
for n in range(len(sparse_blocks))
])
np.testing.assert_allclose(data, diagonal.data)
np.testing.assert_allclose(unique, diagonal.flat_charges[0].unique_charges)
示例7: halton
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def halton(dimensions: int, size: int, start: int, scramble: bool, state: np.random.RandomState) -> Tuple[Array, Array]:
"""Generate nodes and weights for integration according to the Halton sequence."""
# generate Halton sequences
sequences = np.zeros((size, dimensions))
for dimension in range(dimensions):
base = get_prime(dimension)
factor = 1 / base
indices = np.arange(start, start + size)
while 1 - factor < 1:
indices, remainders = np.divmod(indices, base)
if scramble:
remainders = state.permutation(base)[remainders]
sequences[:, dimension] += factor * remainders
factor /= base
# transform the sequences and construct weights
nodes = scipy.stats.norm().ppf(sequences)
weights = np.repeat(1 / size, size)
return nodes, weights
示例8: o2a
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def o2a(self, io, unique=False):
""" Atomic index corresponding to the orbital indicies.
This is a particurlaly slow algorithm due to for-loops.
Note that this will preserve the super-cell offsets.
Parameters
----------
io : array_like
List of indices to return the atoms for
unique : bool, optional
If True only return the unique atoms.
"""
if isinstance(io, Integral):
if unique:
return np.unique(np.argmax(io % self.no <= self.lasto) + (io // self.no) * self.na)
return np.argmax(io % self.no <= self.lasto) + (io // self.no) * self.na
isc, io = np.divmod(_a.asarrayi(io).ravel(), self.no)
a = list_index_le(io, self.lasto)
if unique:
return np.unique(a + isc * self.na)
return a + isc * self.na
示例9: test_two_argument_two_output_ufunc_inplace
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def test_two_argument_two_output_ufunc_inplace(self, value):
v = value * u.m
divisor = 70.*u.cm
v1 = v.copy()
tmp = v.copy()
check = np.divmod(v1, divisor, out=(tmp, v1))
assert check[0] is tmp and check[1] is v1
assert tmp.unit == u.dimensionless_unscaled
assert v1.unit == v.unit
v2 = v.copy()
check2 = np.divmod(v2, divisor, out=(v2, tmp))
assert check2[0] is v2 and check2[1] is tmp
assert v2.unit == u.dimensionless_unscaled
assert tmp.unit == v.unit
v3a = v.copy()
v3b = v.copy()
check3 = np.divmod(v3a, divisor, out=(v3a, v3b))
assert check3[0] is v3a and check3[1] is v3b
assert v3a.unit == u.dimensionless_unscaled
assert v3b.unit == v.unit
示例10: get_vmat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import divmod [as 別名]
def get_vmat(mf, mfset, disp):
nconfigs = len(mfset)
vmat=[]
mygrad = mf.nuc_grad_method()
veff = mygrad.get_veff()
RESTRICTED = (veff.ndim==4)
v1e = mygrad.get_hcore() - np.asarray(mf.cell.pbc_intor("int1e_ipkin", kpts=mf.kpts))
if RESTRICTED:
vtmp = veff - v1e.transpose(1,0,2,3)
else:
vtmp = veff - v1e.transpose(1,0,2,3)[:,None]
aoslice = mf.cell.aoslice_by_atom()
for i in range(nconfigs):
atmid, axis = np.divmod(i, 3)
p0, p1 = aoslice[atmid][2:]
mf1, mf2 = mfset[i]
vfull1 = mf1.get_veff() + mf1.get_hcore() - mf1.cell.pbc_intor('int1e_kin', kpts=mf1.kpts) # <u+|V+|v+>
vfull2 = mf2.get_veff() + mf2.get_hcore() - mf2.cell.pbc_intor('int1e_kin', kpts=mf2.kpts) # <u-|V-|v->
vfull = (vfull1 - vfull2)/disp # (<p+|V+|q+>-<p-|V-|q->)/dR
if RESTRICTED:
vfull[:,p0:p1] -= vtmp[axis,:,p0:p1]
vfull[:,:,p0:p1] -= vtmp[axis,:,p0:p1].transpose(0,2,1).conj()
else:
vfull[:,:,p0:p1] -= vtmp[axis,:,:,p0:p1]
vfull[:,:,:,p0:p1] -= vtmp[axis,:,:,p0:p1].transpose(0,1,3,2).conj()
vmat.append(vfull)
vmat= np.asarray(vmat)
if RESTRICTED:
return vmat[:,0]
else:
return vmat[:,:,0]