當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.diag方法代碼示例

本文整理匯總了Python中numpy.diag方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.diag方法的具體用法?Python numpy.diag怎麽用?Python numpy.diag使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.diag方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_bitmap_mask_resize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def test_bitmap_mask_resize():
    # resize with empty bitmap masks
    raw_masks = dummy_raw_bitmap_masks((0, 28, 28))
    bitmap_masks = BitmapMasks(raw_masks, 28, 28)
    resized_masks = bitmap_masks.resize((56, 72))
    assert len(resized_masks) == 0
    assert resized_masks.height == 56
    assert resized_masks.width == 72

    # resize with bitmap masks contain 1 instances
    raw_masks = np.diag(np.ones(4, dtype=np.uint8))[np.newaxis, ...]
    bitmap_masks = BitmapMasks(raw_masks, 4, 4)
    resized_masks = bitmap_masks.resize((8, 8))
    assert len(resized_masks) == 1
    assert resized_masks.height == 8
    assert resized_masks.width == 8
    truth = np.array([[[1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 0],
                       [0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0],
                       [0, 0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 0, 0],
                       [0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, 1]]])
    assert (resized_masks.masks == truth).all() 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:23,代碼來源:test_masks.py

示例2: classical_mds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def classical_mds(self, D):
        ''' 
        Classical multidimensional scaling

        Parameters
        ----------
        D : square 2D ndarray
            Euclidean Distance Matrix (matrix containing squared distances between points
        '''

        # Apply MDS algorithm for denoising
        n = D.shape[0]
        J = np.eye(n) - np.ones((n,n))/float(n)
        G = -0.5*np.dot(J, np.dot(D, J))

        s, U = np.linalg.eig(G)

        # we need to sort the eigenvalues in decreasing order
        s = np.real(s)
        o = np.argsort(s)
        s = s[o[::-1]]
        U = U[:,o[::-1]]

        S = np.diag(s)[0:self.dim,:]
        self.X = np.dot(np.sqrt(S),U.T) 
開發者ID:LCAV,項目名稱:FRIDA,代碼行數:27,代碼來源:point_cloud.py

示例3: spectrum_analysis

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def spectrum_analysis(model,n,spec):
    """
    sepctrum analysis
    
    params:
        n: number of modes to use\n
        spec: a list of tuples (period,acceleration response)
    """
    freq,mode=eigen_mode(model,n)
    M_=np.dot(mode.T,model.M)
    M_=np.dot(M_,mode)
    K_=np.dot(mode.T,model.K)
    K_=np.dot(K_,mode)
    C_=np.dot(mode.T,model.C)
    C_=np.dot(C_,mode)
    d_=[]
    for (m_,k_,c_) in zip(M_.diag(),K_.diag(),C_.diag()):
        sdof=SDOFSystem(m_,k_)
        T=sdof.omega_d()
        d_.append(np.interp(T,spec[0],spec[1]*m_))
    d=np.dot(d_,mode)
    #CQC
    return d 
開發者ID:zhuoju36,項目名稱:StructEngPy,代碼行數:25,代碼來源:dynamic.py

示例4: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def __init__(self):
        """Initialize variable used by Kalman Filter class
        Args:
            None
        Return:
            None
        """
        self.dt = 0.005  # delta time

        self.A = np.array([[1, 0], [0, 1]])  # matrix in observation equations
        self.u = np.zeros((2, 1))  # previous state vector

        # (x,y) tracking object center
        self.b = np.array([[0], [255]])  # vector of observations

        self.P = np.diag((3.0, 3.0))  # covariance matrix
        self.F = np.array([[1.0, self.dt], [0.0, 1.0]])  # state transition mat

        self.Q = np.eye(self.u.shape[0])  # process noise matrix
        self.R = np.eye(self.b.shape[0])  # observation noise matrix
        self.lastResult = np.array([[0], [255]]) 
開發者ID:srianant,項目名稱:kalman_filter_multi_object_tracking,代碼行數:23,代碼來源:kalman_filter.py

示例5: train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def train(self):

        if (self.status != 'init'):
            print("Please load train data and init W first.")
            return self.W

        self.status = 'train'

        original_X = self.train_X[:, 1:]
        K = utility.Kernel.kernel_matrix(self, original_X)
        I = np.diag(np.ones(self.data_num))

        inverse_part = np.linalg.inv(self.lambda_p * I + K)
        self.beta = np.dot(inverse_part, self.train_Y)

        return self.W 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:18,代碼來源:KernelRidgeRegression.py

示例6: _eigen_components

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def _eigen_components(self):
        components = [(0, np.diag([1, 1, 1, 0, 1, 0, 0, 1]))]
        nontrivial_part = np.zeros((3, 3), dtype=np.complex128)
        for ij, w in zip([(1, 2), (0, 2), (0, 1)], self.weights):
            nontrivial_part[ij] = w
            nontrivial_part[ij[::-1]] = w.conjugate()
        assert np.allclose(nontrivial_part, nontrivial_part.conj().T)
        eig_vals, eig_vecs = np.linalg.eigh(nontrivial_part)
        for eig_val, eig_vec in zip(eig_vals, eig_vecs.T):
            exp_factor = -eig_val / np.pi
            proj = np.zeros((8, 8), dtype=np.complex128)
            nontrivial_indices = np.array([3, 5, 6], dtype=np.intp)
            proj[nontrivial_indices[:, np.newaxis], nontrivial_indices] = (
                np.outer(eig_vec.conjugate(), eig_vec))
            components.append((exp_factor, proj))
        return components 
開發者ID:quantumlib,項目名稱:OpenFermion-Cirq,代碼行數:18,代碼來源:fermionic_simulation.py

示例7: test_rhf_func_gen

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def test_rhf_func_gen():
    rhf_objective, molecule, parameters, _, _ = make_h6_1_3()
    ansatz, energy, _ = rhf_func_generator(rhf_objective)
    assert np.isclose(molecule.hf_energy, energy(parameters))

    ansatz, energy, _, opdm_func = rhf_func_generator(
        rhf_objective, initial_occ_vec=[1] * 3 + [0] * 3, get_opdm_func=True)
    assert np.isclose(molecule.hf_energy, energy(parameters))
    test_opdm = opdm_func(parameters)
    u = ansatz(parameters)
    initial_opdm = np.diag([1] * 3 + [0] * 3)
    final_odpm = u @ initial_opdm @ u.T
    assert np.allclose(test_opdm, final_odpm)

    result = rhf_minimization(rhf_objective, initial_guess=parameters)
    assert np.allclose(result.x, parameters) 
開發者ID:quantumlib,項目名稱:OpenFermion-Cirq,代碼行數:18,代碼來源:gradient_hf_test.py

示例8: adjacencyToLaplacian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def adjacencyToLaplacian(W):
    """
    adjacencyToLaplacian: Computes the Laplacian from an Adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        L (np.array): Laplacian matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # And build the degree matrix
    D = np.diag(d)
    # Return the Laplacian
    return D - W 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:22,代碼來源:graphTools.py

示例9: normalizeAdjacency

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def normalizeAdjacency(W):
    """
    NormalizeAdjacency: Computes the degree-normalized adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        A (np.array): degree-normalized adjacency matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # Invert the square root of the degree
    d = 1/np.sqrt(d)
    # And build the square root inverse degree matrix
    D = np.diag(d)
    # Return the Normalized Adjacency
    return D @ W @ D 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:24,代碼來源:graphTools.py

示例10: normalizeLaplacian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def normalizeLaplacian(L):
    """
    NormalizeLaplacian: Computes the degree-normalized Laplacian matrix

    Input:

        L (np.array): Laplacian matrix

    Output:

        normL (np.array): degree-normalized Laplacian matrix
    """
    # Check that the matrix is square
    assert L.shape[0] == L.shape[1]
    # Compute the degree vector (diagonal elements of L)
    d = np.diag(L)
    # Invert the square root of the degree
    d = 1/np.sqrt(d)
    # And build the square root inverse degree matrix
    D = np.diag(d)
    # Return the Normalized Laplacian
    return D @ L @ D 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:24,代碼來源:graphTools.py

示例11: get_ma_dist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def get_ma_dist(A, B):
    Y = A.copy()
    X = B.copy()
    
    S = np.cov(X.T)
    try:
        SI = np.linalg.inv(S)
    except:
        print("Singular Matrix: using np.linalg.pinv")
        SI = np.linalg.pinv(S)
    mu = np.mean(X, axis=0)
    
    diff = Y - mu
    Dct_c = np.diag(diff @ SI @ diff.T)
    
    return Dct_c 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:18,代碼來源:EasyTL.py

示例12: fit

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def fit(self, X, y=None):
        """Compute the mean, whitening and dewhitening matrices.

        Parameters
        ----------
        X : array-like with shape [n_samples, n_features]
            The data used to compute the mean, whitening and dewhitening
            matrices.
        """
        X = check_array(X, accept_sparse=None, copy=self.copy,
                        ensure_2d=True)
        X = as_float_array(X, copy=self.copy)
        self.mean_ = X.mean(axis=0)
        X_ = X - self.mean_
        cov = np.dot(X_.T, X_) / (X_.shape[0]-1)
        U, S, _ = linalg.svd(cov)
        s = np.sqrt(S.clip(self.regularization))
        s_inv = np.diag(1./s)
        s = np.diag(s)
        self.whiten_ = np.dot(np.dot(U, s_inv), U.T)
        self.dewhiten_ = np.dot(np.dot(U, s), U.T)
        return self 
開發者ID:mwv,項目名稱:zca,代碼行數:24,代碼來源:zca.py

示例13: SpectralClustering

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def SpectralClustering(CKSym, n):
    # This is direct port of JHU vision lab code. Could probably use sklearn SpectralClustering.
    CKSym = CKSym.astype(float)
    N, _ = CKSym.shape
    MAXiter = 1000  # Maximum number of iterations for KMeans
    REPlic = 20  # Number of replications for KMeans

    DN = np.diag(np.divide(1, np.sqrt(np.sum(CKSym, axis=0) + np.finfo(float).eps)))
    LapN = identity(N).toarray().astype(float) - np.matmul(np.matmul(DN, CKSym), DN)
    _, _, vN = np.linalg.svd(LapN)
    vN = vN.T
    kerN = vN[:, N - n:N]
    normN = np.sqrt(np.sum(np.square(kerN), axis=1))
    kerNS = np.divide(kerN, normN.reshape(len(normN), 1) + np.finfo(float).eps)
    km = KMeans(n_clusters=n, n_init=REPlic, max_iter=MAXiter, n_jobs=-1).fit(kerNS)
    return km.labels_ 
開發者ID:abhinav4192,項目名稱:sparse-subspace-clustering-python,代碼行數:18,代碼來源:SpectralClustering.py

示例14: class_accuracy

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def class_accuracy(prediction, label):
    cf = confusion_matrix(prediction, label)
    cls_cnt = cf.sum(axis=1)
    cls_hit = np.diag(cf)

    cls_acc = cls_hit / cls_cnt.astype(float)

    mean_cls_acc = cls_acc.mean()

    return cls_acc, mean_cls_acc 
開發者ID:yjxiong,項目名稱:tsn-pytorch,代碼行數:12,代碼來源:utils.py

示例15: invertFast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import diag [as 別名]
def invertFast(A, d):
	"""
	given an array A of shape d x k and a d x 1 vector d, computes (A * A.T + diag(d)) ^{-1}
	Checked.
	"""
	assert(A.shape[0] == d.shape[0])
	assert(d.shape[1] == 1)

	k = A.shape[1]
	A = np.array(A)
	d_vec = np.array(d)
	d_inv = np.array(1 / d_vec[:, 0])

	inv_d_squared = np.dot(np.atleast_2d(d_inv).T, np.atleast_2d(d_inv))
	M = np.diag(d_inv) - inv_d_squared * np.dot(np.dot(A, np.linalg.inv(np.eye(k, k) + np.dot(A.T, mult_diag(d_inv, A)))), A.T)

	return M 
開發者ID:epierson9,項目名稱:ZIFA,代碼行數:19,代碼來源:ZIFA.py


注:本文中的numpy.diag方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。