本文整理匯總了Python中numpy.core.numeric.all方法的典型用法代碼示例。如果您正苦於以下問題:Python numeric.all方法的具體用法?Python numeric.all怎麽用?Python numeric.all使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.core.numeric
的用法示例。
在下文中一共展示了numeric.all方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __eq__
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def __eq__(self, other):
if not isinstance(other, poly1d):
return NotImplemented
if self.coeffs.shape != other.coeffs.shape:
return False
return (self.coeffs == other.coeffs).all()
示例2: __eq__
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def __eq__(self, other):
if self.coeffs.shape != other.coeffs.shape:
return False
return (self.coeffs == other.coeffs).all()
示例3: mintypecode
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def mintypecode(typechars, typeset='GDFgdf', default='d'):
"""
Return the character for the minimum-size type to which given types can
be safely cast.
The returned type character must represent the smallest size dtype such
that an array of the returned type can handle the data from an array of
all types in `typechars` (or if `typechars` is an array, then its
dtype.char).
Parameters
----------
typechars : list of str or array_like
If a list of strings, each string should represent a dtype.
If array_like, the character representation of the array dtype is used.
typeset : str or list of str, optional
The set of characters that the returned character is chosen from.
The default set is 'GDFgdf'.
default : str, optional
The default character, this is returned if none of the characters in
`typechars` matches a character in `typeset`.
Returns
-------
typechar : str
The character representing the minimum-size type that was found.
See Also
--------
dtype, sctype2char, maximum_sctype
Examples
--------
>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'
>>> np.mintypecode('abceh', default='G')
'G'
"""
typecodes = [(isinstance(t, str) and t) or asarray(t).dtype.char
for t in typechars]
intersection = [t for t in typecodes if t in typeset]
if not intersection:
return default
if 'F' in intersection and 'd' in intersection:
return 'D'
l = [(_typecodes_by_elsize.index(t), t) for t in intersection]
l.sort()
return l[0][1]
示例4: real_if_close
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def real_if_close(a, tol=100):
"""
If complex input returns a real array if complex parts are close to zero.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
Parameters
----------
a : array_like
Input array.
tol : float
Tolerance in machine epsilons for the complex part of the elements
in the array.
Returns
-------
out : ndarray
If `a` is real, the type of `a` is used for the output. If `a`
has complex elements, the returned type is float.
See Also
--------
real, imag, angle
Notes
-----
Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print
out the machine epsilon for floats.
Examples
--------
>>> np.finfo(float).eps
2.2204460492503131e-16
>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([ 2.1 +4.00000000e-13j])
"""
a = asanyarray(a)
if not issubclass(a.dtype.type, _nx.complexfloating):
return a
if tol > 1:
from numpy.core import getlimits
f = getlimits.finfo(a.dtype.type)
tol = f.eps * tol
if _nx.all(_nx.absolute(a.imag) < tol):
a = a.real
return a
示例5: common_type
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def common_type(*arrays):
"""
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar
type, even if all the arrays are integer arrays. If one of the inputs is
an integer array, the minimum precision type that is returned is a
64-bit floating point dtype.
All input arrays except int64 and uint64 can be safely cast to the
returned dtype without loss of information.
Parameters
----------
array1, array2, ... : ndarrays
Input arrays.
Returns
-------
out : data type code
Data type code.
See Also
--------
dtype, mintypecode
Examples
--------
>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>
"""
is_complex = False
precision = 0
for a in arrays:
t = a.dtype.type
if iscomplexobj(a):
is_complex = True
if issubclass(t, _nx.integer):
p = 2 # array_precision[_nx.double]
else:
p = array_precision.get(t, None)
if p is None:
raise TypeError("can't get common type for non-numeric array")
precision = max(precision, p)
if is_complex:
return array_type[1][precision]
else:
return array_type[0][precision]
示例6: mintypecode
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def mintypecode(typechars,typeset='GDFgdf',default='d'):
"""
Return the character for the minimum-size type to which given types can
be safely cast.
The returned type character must represent the smallest size dtype such
that an array of the returned type can handle the data from an array of
all types in `typechars` (or if `typechars` is an array, then its
dtype.char).
Parameters
----------
typechars : list of str or array_like
If a list of strings, each string should represent a dtype.
If array_like, the character representation of the array dtype is used.
typeset : str or list of str, optional
The set of characters that the returned character is chosen from.
The default set is 'GDFgdf'.
default : str, optional
The default character, this is returned if none of the characters in
`typechars` matches a character in `typeset`.
Returns
-------
typechar : str
The character representing the minimum-size type that was found.
See Also
--------
dtype, sctype2char, maximum_sctype
Examples
--------
>>> np.mintypecode(['d', 'f', 'S'])
'd'
>>> x = np.array([1.1, 2-3.j])
>>> np.mintypecode(x)
'D'
>>> np.mintypecode('abceh', default='G')
'G'
"""
typecodes = [(isinstance(t, str) and t) or asarray(t).dtype.char
for t in typechars]
intersection = [t for t in typecodes if t in typeset]
if not intersection:
return default
if 'F' in intersection and 'd' in intersection:
return 'D'
l = []
for t in intersection:
i = _typecodes_by_elsize.index(t)
l.append((i, t))
l.sort()
return l[0][1]
示例7: real_if_close
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def real_if_close(a,tol=100):
"""
If complex input returns a real array if complex parts are close to zero.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
Parameters
----------
a : array_like
Input array.
tol : float
Tolerance in machine epsilons for the complex part of the elements
in the array.
Returns
-------
out : ndarray
If `a` is real, the type of `a` is used for the output. If `a`
has complex elements, the returned type is float.
See Also
--------
real, imag, angle
Notes
-----
Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16. You can use 'np.finfo(float).eps' to print
out the machine epsilon for floats.
Examples
--------
>>> np.finfo(float).eps
2.2204460492503131e-16
>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([ 2.1 +4.00000000e-13j])
"""
a = asanyarray(a)
if not issubclass(a.dtype.type, _nx.complexfloating):
return a
if tol > 1:
from numpy.core import getlimits
f = getlimits.finfo(a.dtype.type)
tol = f.eps * tol
if _nx.all(_nx.absolute(a.imag) < tol):
a = a.real
return a
示例8: real_if_close
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def real_if_close(a,tol=100):
"""
If complex input returns a real array if complex parts are close to zero.
"Close to zero" is defined as `tol` * (machine epsilon of the type for
`a`).
Parameters
----------
a : array_like
Input array.
tol : float
Tolerance in machine epsilons for the complex part of the elements
in the array.
Returns
-------
out : ndarray
If `a` is real, the type of `a` is used for the output. If `a`
has complex elements, the returned type is float.
See Also
--------
real, imag, angle
Notes
-----
Machine epsilon varies from machine to machine and between data types
but Python floats on most platforms have a machine epsilon equal to
2.2204460492503131e-16. You can use 'np.finfo(np.float).eps' to print
out the machine epsilon for floats.
Examples
--------
>>> np.finfo(np.float).eps
2.2204460492503131e-16
>>> np.real_if_close([2.1 + 4e-14j], tol=1000)
array([ 2.1])
>>> np.real_if_close([2.1 + 4e-13j], tol=1000)
array([ 2.1 +4.00000000e-13j])
"""
a = asanyarray(a)
if not issubclass(a.dtype.type, _nx.complexfloating):
return a
if tol > 1:
from numpy.core import getlimits
f = getlimits.finfo(a.dtype.type)
tol = f.eps * tol
if _nx.all(_nx.absolute(a.imag) < tol):
a = a.real
return a
示例9: common_type
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def common_type(*arrays):
"""
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar
type, even if all the arrays are integer arrays. If one of the inputs is
an integer array, the minimum precision type that is returned is a
64-bit floating point dtype.
All input arrays can be safely cast to the returned dtype without loss
of information.
Parameters
----------
array1, array2, ... : ndarrays
Input arrays.
Returns
-------
out : data type code
Data type code.
See Also
--------
dtype, mintypecode
Examples
--------
>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>
"""
is_complex = False
precision = 0
for a in arrays:
t = a.dtype.type
if iscomplexobj(a):
is_complex = True
if issubclass(t, _nx.integer):
p = 2 # array_precision[_nx.double]
else:
p = array_precision.get(t, None)
if p is None:
raise TypeError("can't get common type for non-numeric array")
precision = max(precision, p)
if is_complex:
return array_type[1][precision]
else:
return array_type[0][precision]
示例10: common_type
# 需要導入模塊: from numpy.core import numeric [as 別名]
# 或者: from numpy.core.numeric import all [as 別名]
def common_type(*arrays):
"""
Return a scalar type which is common to the input arrays.
The return type will always be an inexact (i.e. floating point) scalar
type, even if all the arrays are integer arrays. If one of the inputs is
an integer array, the minimum precision type that is returned is a
64-bit floating point dtype.
All input arrays except int64 and uint64 can be safely cast to the
returned dtype without loss of information.
Parameters
----------
array1, array2, ... : ndarrays
Input arrays.
Returns
-------
out : data type code
Data type code.
See Also
--------
dtype, mintypecode
Examples
--------
>>> np.common_type(np.arange(2, dtype=np.float32))
<type 'numpy.float32'>
>>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
<type 'numpy.float64'>
>>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
<type 'numpy.complex128'>
"""
is_complex = False
precision = 0
for a in arrays:
t = a.dtype.type
if iscomplexobj(a):
is_complex = True
if issubclass(t, _nx.integer):
p = 2 # array_precision[_nx.double]
else:
p = array_precision.get(t, None)
if p is None:
raise TypeError("can't get common type for non-numeric array")
precision = max(precision, p)
if is_complex:
return array_type[1][precision]
else:
return array_type[0][precision]