本文整理匯總了Python中numpy.core.multiarray.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python multiarray.zeros方法的具體用法?Python multiarray.zeros怎麽用?Python multiarray.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.core.multiarray
的用法示例。
在下文中一共展示了multiarray.zeros方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: zeros
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def zeros(shape, typecode='l', savespace=0, dtype=None):
"""zeros(shape, dtype=int) returns an array of the given
dimensions which is initialized to all zeros
"""
dtype = convtypecode(typecode, dtype)
return mu.zeros(shape, dtype)
示例2: dSbus_dV
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def dSbus_dV(Ybus, V, I):
"""
Calls functions to calculate dS/dV depending on whether Ybus is sparse or not
"""
# I is substracted from Y*V,
# therefore it must be negative for numba version of dSbus_dV if it is not zeros anyways
# calculates sparse data
dS_dVm, dS_dVa = dSbus_dV_numba_sparse(Ybus.data, Ybus.indptr, Ybus.indices, V, V / abs(V), I)
# generate sparse CSR matrices with computed data and return them
return sparse((dS_dVm, Ybus.indices, Ybus.indptr)), sparse((dS_dVa, Ybus.indices, Ybus.indptr))
# @jit(i8(c16[:], c16[:], i4[:], i4[:], i8[:], i8[:], f8[:], i8[:], i8[:]), nopython=True, cache=False)
示例3: _create_J_with_numba
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def _create_J_with_numba(Ybus, V, pvpq, pq, pvpq_lookup, npv, npq):
"""
:param Ybus:
:param V:
:param pvpq:
:param pq:
:param createJ:
:param pvpq_lookup:
:param npv:
:param npq:
:return:
"""
Ibus = zeros(len(V), dtype=complex128)
# create Jacobian from fast calc of dS_dV
dVm_x, dVa_x = dSbus_dV_numba_sparse(Ybus.data, Ybus.indptr, Ybus.indices, V, V / abs(V), Ibus)
# data in J, space preallocated is bigger than acutal Jx -> will be reduced later on
Jx = empty(len(dVm_x) * 4, dtype=float64)
# row pointer, dimension = pvpq.shape[0] + pq.shape[0] + 1
Jp = zeros(pvpq.shape[0] + pq.shape[0] + 1, dtype=int32)
# indices, same with the preallocated space (see Jx)
Jj = empty(len(dVm_x) * 4, dtype=int32)
# fill Jx, Jj and Jp
# createJ(dVm_x, dVa_x, Ybus.indptr, Ybus.indices, pvpq_lookup, pvpq, pq, Jx, Jj, Jp)
if len(pvpq) == len(pq):
create_J2(dVm_x, dVa_x, Ybus.indptr, Ybus.indices, pvpq_lookup, pvpq, pq, Jx, Jj, Jp)
else:
create_J(dVm_x, dVa_x, Ybus.indptr, Ybus.indices, pvpq_lookup, pvpq, pq, Jx, Jj, Jp)
# resize before generating the scipy sparse matrix
Jx.resize(Jp[-1], refcheck=False)
Jj.resize(Jp[-1], refcheck=False)
# generate scipy sparse matrix
dimJ = npv + npq + npq
J = sparse((Jx, Jj, Jp), shape=(dimJ, dimJ))
return J
示例4: zeros_like
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def zeros_like(a, dtype=None, order='K', subok=True):
"""
Return an array of zeros with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
Overrides the data type of the result.
.. versionadded:: 1.6.0
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
.. versionadded:: 1.6.0
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of zeros with the same shape and type as `a`.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.zeros_like(x)
array([[0, 0, 0],
[0, 0, 0]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0., 1., 2.])
>>> np.zeros_like(y)
array([ 0., 0., 0.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
# needed instead of a 0 to get same result as zeros for for string dtypes
z = zeros(1, dtype=res.dtype)
multiarray.copyto(res, z, casting='unsafe')
return res
示例5: ones
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def ones(shape, dtype=None, order='C'):
"""
Return a new array of given shape and type, filled with ones.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of ones with the given shape, dtype, and order.
See Also
--------
zeros, ones_like
Examples
--------
>>> np.ones(5)
array([ 1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=np.int)
array([1, 1, 1, 1, 1])
>>> np.ones((2, 1))
array([[ 1.],
[ 1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[ 1., 1.],
[ 1., 1.]])
"""
a = empty(shape, dtype, order)
multiarray.copyto(a, 1, casting='unsafe')
return a
示例6: ones_like
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def ones_like(a, dtype=None, order='K', subok=True):
"""
Return an array of ones with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
dtype : data-type, optional
Overrides the data type of the result.
.. versionadded:: 1.6.0
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
.. versionadded:: 1.6.0
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of ones with the same shape and type as `a`.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
[3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
[1, 1, 1]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0., 1., 2.])
>>> np.ones_like(y)
array([ 1., 1., 1.])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
multiarray.copyto(res, 1, casting='unsafe')
return res
示例7: full
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def full(shape, fill_value, dtype=None, order='C'):
"""
Return a new array of given shape and type, filled with `fill_value`.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
fill_value : scalar
Fill value.
dtype : data-type, optional
The desired data-type for the array, e.g., `np.int8`. Default
is `float`, but will change to `np.array(fill_value).dtype` in a
future release.
order : {'C', 'F'}, optional
Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.
Returns
-------
out : ndarray
Array of `fill_value` with the given shape, dtype, and order.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
full_like : Fill an array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
Examples
--------
>>> np.full((2, 2), np.inf)
array([[ inf, inf],
[ inf, inf]])
>>> np.full((2, 2), 10, dtype=np.int)
array([[10, 10],
[10, 10]])
"""
a = empty(shape, dtype, order)
if dtype is None and array(fill_value).dtype != a.dtype:
warnings.warn(
"in the future, full({0}, {1!r}) will return an array of {2!r}".
format(shape, fill_value, array(fill_value).dtype), FutureWarning)
multiarray.copyto(a, fill_value, casting='unsafe')
return a
示例8: full_like
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def full_like(a, fill_value, dtype=None, order='K', subok=True):
"""
Return a full array with the same shape and type as a given array.
Parameters
----------
a : array_like
The shape and data-type of `a` define these same attributes of
the returned array.
fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
order : {'C', 'F', 'A', or 'K'}, optional
Overrides the memory layout of the result. 'C' means C-order,
'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
'C' otherwise. 'K' means match the layout of `a` as closely
as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class
type of 'a', otherwise it will be a base-class array. Defaults
to True.
Returns
-------
out : ndarray
Array of `fill_value` with the same shape and type as `a`.
See Also
--------
zeros_like : Return an array of zeros with shape and type of input.
ones_like : Return an array of ones with shape and type of input.
empty_like : Return an empty array with shape and type of input.
zeros : Return a new array setting values to zero.
ones : Return a new array setting values to one.
empty : Return a new uninitialized array.
full : Fill a new array.
Examples
--------
>>> x = np.arange(6, dtype=np.int)
>>> np.full_like(x, 1)
array([1, 1, 1, 1, 1, 1])
>>> np.full_like(x, 0.1)
array([0, 0, 0, 0, 0, 0])
>>> np.full_like(x, 0.1, dtype=np.double)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
>>> np.full_like(x, np.nan, dtype=np.double)
array([ nan, nan, nan, nan, nan, nan])
>>> y = np.arange(6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
"""
res = empty_like(a, dtype=dtype, order=order, subok=subok)
multiarray.copyto(res, fill_value, casting='unsafe')
return res
示例9: dSbus_dV_numba_sparse
# 需要導入模塊: from numpy.core import multiarray [as 別名]
# 或者: from numpy.core.multiarray import zeros [as 別名]
def dSbus_dV_numba_sparse(Yx, Yp, Yj, V, Vnorm, Ibus): # pragma: no cover
"""Computes partial derivatives of power injection w.r.t. voltage.
Calculates faster with numba and sparse matrices.
Input: Ybus in CSR sparse form (Yx = data, Yp = indptr, Yj = indices), V and Vnorm (= V / abs(V))
OUTPUT: data from CSR form of dS_dVm, dS_dVa
(index pointer and indices are the same as the ones from Ybus)
Translation of: dS_dVm = dS_dVm = diagV * conj(Ybus * diagVnorm) + conj(diagIbus) * diagVnorm
dS_dVa = 1j * diagV * conj(diagIbus - Ybus * diagV)
"""
# transform input
# init buffer vector
buffer = zeros(len(V), dtype=complex128)
dS_dVm = Yx.copy()
dS_dVa = Yx.copy()
# iterate through sparse matrix
for r in range(len(Yp) - 1):
for k in range(Yp[r], Yp[r + 1]):
# Ibus = Ybus * V
buffer[r] += Yx[k] * V[Yj[k]]
# Ybus * diag(Vnorm)
dS_dVm[k] *= Vnorm[Yj[k]]
# Ybus * diag(V)
dS_dVa[k] *= V[Yj[k]]
Ibus[r] += buffer[r]
# conj(diagIbus) * diagVnorm
buffer[r] = conj(buffer[r]) * Vnorm[r]
for r in range(len(Yp) - 1):
for k in range(Yp[r], Yp[r + 1]):
# diag(V) * conj(Ybus * diagVnorm)
dS_dVm[k] = conj(dS_dVm[k]) * V[r]
if r == Yj[k]:
# diagonal elements
dS_dVa[k] = -Ibus[r] + dS_dVa[k]
dS_dVm[k] += buffer[r]
# 1j * diagV * conj(diagIbus - Ybus * diagV)
dS_dVa[k] = conj(-dS_dVa[k]) * (1j * V[r])
return dS_dVm, dS_dVa