當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.conjugate方法代碼示例

本文整理匯總了Python中numpy.conjugate方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.conjugate方法的具體用法?Python numpy.conjugate怎麽用?Python numpy.conjugate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.conjugate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def __init__(self, j):
    self._j = j
    self._c2r = np.zeros( (2*j+1, 2*j+1), dtype=np.complex128)
    self._c2r[j,j]=1.0
    for m in range(1,j+1):
      self._c2r[m+j, m+j] = sgn[m] * np.sqrt(0.5) 
      self._c2r[m+j,-m+j] = np.sqrt(0.5) 
      self._c2r[-m+j,-m+j]= 1j*np.sqrt(0.5)
      self._c2r[-m+j, m+j]= -sgn[m] * 1j * np.sqrt(0.5)
    
    self._hc_c2r = np.conj(self._c2r).transpose()
    self._conj_c2r = np.conjugate(self._c2r) # what is the difference ? conj and conjugate
    self._tr_c2r = np.transpose(self._c2r)
    
    #print(abs(self._hc_c2r.conj().transpose()-self._c2r).sum())

  #
  #
  # 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:21,代碼來源:m_c2r.py

示例2: infidelity_diff

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def infidelity_diff(self, constant_value):
        """
        Returns a ReportableQty that is the (element-wise in the vector case)
        difference between `constant_value` and this one given by:

        `1.0 - Re(conjugate(constant_value) * self )`
        """
        # let diff(x) = 1.0 - Re(const.C * x) = 1.0 - (const.re * x.re + const.im * x.im)
        # so d(diff)/dx.re = -const.re, d(diff)/dx.im = -const.im
        # diff(x + dx) = diff(x) + d(diff)/dx * dx
        # diff(x + dx) - diff(x) =  - (const.re * dx.re + const.im * dx.im)
        v = 1.0 - _np.real(_np.conjugate(constant_value) * self.value)
        if self.has_eb():
            eb = abs(_np.real(constant_value) * _np.real(self.errbar)
                     + _np.imag(constant_value) * _np.real(self.errbar))
            return ReportableQty(v, eb, self.nonMarkovianEBs)
        else:
            return ReportableQty(v) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:20,代碼來源:reportableqty.py

示例3: is_hermitian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def is_hermitian(mx, TOL=1e-9):
    """
    Test whether mx is a hermitian matrix.

    Parameters
    ----------
    mx : numpy array
        Matrix to test.

    TOL : float, optional
        Tolerance on absolute magitude of elements.

    Returns
    -------
    bool
        True if mx is hermitian, otherwise False.
    """
    (m, n) = mx.shape
    for i in range(m):
        if abs(mx[i, i].imag) > TOL: return False
        for j in range(i + 1, n):
            if abs(mx[i, j] - mx[j, i].conjugate()) > TOL: return False
    return True 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:25,代碼來源:matrixtools.py

示例4: to_unitary

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def to_unitary(scaled_unitary):
    """
    Compute the scaling factor required to turn a scalar multiple of a unitary matrix
    to a unitary matrix.

    Parameters
    ----------
    scaled_unitary : ndarray
        A scaled unitary matrix

    Returns
    -------
    scale : float
    unitary : ndarray
        Such that `scale * unitary == scaled_unitary`.

    """
    scaled_identity = _np.dot(scaled_unitary, _np.conjugate(scaled_unitary.T))
    scale = _np.sqrt(scaled_identity[0, 0])
    assert(_np.allclose(scaled_identity / (scale**2), _np.identity(scaled_identity.shape[0], 'd'))), \
        "Given `scaled_unitary` does not appear to be a scaled unitary matrix!"
    return scale, (scaled_unitary / scale) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:24,代碼來源:matrixtools.py

示例5: state_to_dmvec

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def state_to_dmvec(psi):
    """
    Compute the vectorized density matrix which acts as the state `psi`.

    This is just the outer product map |psi> => |psi><psi| with the
    output flattened, i.e. `dot(psi, conjugate(psi).T)`.

    Parameters
    ----------
    psi : numpy array
        The state vector.

    Returns
    -------
    numpy array
       The vectorized density matrix.
    """
    psi = psi.reshape((psi.size, 1))  # convert to (N,1) shape if necessary
    dm = _np.dot(psi, _np.conjugate(psi.T))
    return dm.flatten() 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:22,代碼來源:optools.py

示例6: unitary_to_process_mx

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def unitary_to_process_mx(U):
    """
    Compute the super-operator which acts on (row)-vectorized
    density matrices from a unitary operator (matrix) U which
    acts on state vectors.  This super-operator is given by
    the tensor product of U and conjugate(U), i.e. kron(U,U.conj).

    Parameters
    ----------
    U : numpy array
        The unitary matrix which acts on state vectors.

    Returns
    -------
    numpy array
       The super-operator process matrix.
    """
    # U -> kron(U,Uc) since U rho U_dag -> kron(U,Uc)
    #  since AXB --row-vectorize--> kron(A,B.T)*vec(X)
    return _np.kron(U, _np.conjugate(U)) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:22,代碼來源:optools.py

示例7: test_poly

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def test_poly(self):
        assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
                                  [1, -3, -2, 6])

        # From matlab docs
        A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
        assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])

        # Should produce real output for perfect conjugates
        assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
        assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
                                      1-2j, 1.+3.5j, 1-3.5j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
        assert_(np.isrealobj(np.poly([1j, -1j])))
        assert_(np.isrealobj(np.poly([1, -1])))

        assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))

        np.random.seed(42)
        a = np.random.randn(100) + 1j*np.random.randn(100)
        assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_polynomial.py

示例8: test_testArrayMethods

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        assert_(eq(a.any(), a._data.any()))
        assert_(eq(a.all(), a._data.all()))
        assert_(eq(a.argmax(), a._data.argmax()))
        assert_(eq(a.argmin(), a._data.argmin()))
        assert_(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        assert_(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        assert_(eq(a.conj(), a._data.conj()))
        assert_(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        assert_(eq(m.diagonal(), m._data.diagonal()))
        assert_(eq(a.sum(), a._data.sum()))
        assert_(eq(a.take([1, 2]), a._data.take([1, 2])))
        assert_(eq(m.transpose(), m._data.transpose())) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_old_ma.py

示例9: test_generic_methods

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def test_generic_methods(self):
        # Tests some MaskedArray methods.
        a = array([1, 3, 2])
        assert_equal(a.any(), a._data.any())
        assert_equal(a.all(), a._data.all())
        assert_equal(a.argmax(), a._data.argmax())
        assert_equal(a.argmin(), a._data.argmin())
        assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4))
        assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1]))
        assert_equal(a.conj(), a._data.conj())
        assert_equal(a.conjugate(), a._data.conjugate())

        m = array([[1, 2], [3, 4]])
        assert_equal(m.diagonal(), m._data.diagonal())
        assert_equal(a.sum(), a._data.sum())
        assert_equal(a.take([1, 2]), a._data.take([1, 2]))
        assert_equal(m.transpose(), m._data.transpose()) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_core.py

示例10: test_testArrayMethods

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def test_testArrayMethods(self):
        a = array([1, 3, 2])
        self.assertTrue(eq(a.any(), a._data.any()))
        self.assertTrue(eq(a.all(), a._data.all()))
        self.assertTrue(eq(a.argmax(), a._data.argmax()))
        self.assertTrue(eq(a.argmin(), a._data.argmin()))
        self.assertTrue(eq(a.choose(0, 1, 2, 3, 4),
                           a._data.choose(0, 1, 2, 3, 4)))
        self.assertTrue(eq(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])))
        self.assertTrue(eq(a.conj(), a._data.conj()))
        self.assertTrue(eq(a.conjugate(), a._data.conjugate()))
        m = array([[1, 2], [3, 4]])
        self.assertTrue(eq(m.diagonal(), m._data.diagonal()))
        self.assertTrue(eq(a.sum(), a._data.sum()))
        self.assertTrue(eq(a.take([1, 2]), a._data.take([1, 2])))
        self.assertTrue(eq(m.transpose(), m._data.transpose())) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:test_old_ma.py

示例11: qmat

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def qmat(self, modes=None):
        """ Construct the covariance matrix for the Q function"""
        if modes is None:
            modes = list(range(self.nlen))

        rows = np.reshape(modes, [-1, 1])
        cols = np.reshape(modes, [1, -1])

        sigmaq = np.concatenate(
            (
                np.concatenate(
                    (self.nmat[rows, cols], np.conjugate(self.mmat[rows, cols])), axis=1
                ),
                np.concatenate(
                    (self.mmat[rows, cols], np.conjugate(self.nmat[rows, cols])), axis=1
                ),
            ),
            axis=0,
        ) + np.identity(2 * len(modes))
        return sigmaq 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:22,代碼來源:gaussiancircuit.py

示例12: test_squeezed_coherent

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def test_squeezed_coherent(setup_backend, hbar, tol):
    """Test Wigner function for a squeezed coherent state
    matches the analytic result"""
    backend = setup_backend(1)
    backend.prepare_coherent_state(np.abs(A), np.angle(A), 0)
    backend.squeeze(R, PHI, 0)

    state = backend.state()
    W = state.wigner(0, XVEC, XVEC)
    rot = rotm(PHI / 2)

    # exact wigner function
    alpha = A * np.cosh(R) - np.conjugate(A) * np.exp(1j * PHI) * np.sinh(R)
    mu = np.array([alpha.real, alpha.imag]) * np.sqrt(2 * hbar)
    cov = np.diag([np.exp(-2 * R), np.exp(2 * R)])
    cov = np.dot(rot, np.dot(cov, rot.T)) * hbar / 2.0
    Wexact = wigner(GRID, mu, cov)

    assert np.allclose(W, Wexact, atol=0.01, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:21,代碼來源:test_states_wigner.py

示例13: spectralwhitening

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def spectralwhitening(stream):
    """
    Apply spectral whitening to data.
    Data is divided by its smoothed (Default: None) amplitude spectrum.
    """
    stream2 = copy.deepcopy(stream)

    for trace in arange(len(stream2)):
        data = stream2[trace].data

        n = len(data)
        nfft = nextpow2(n)

        spec = fft(data, nfft)
        spec_ampl = sqrt(abs(multiply(spec, conjugate(spec))))

        spec /= spec_ampl  # Do we need to do some smoothing here?
        ret = real(ifft(spec, nfft)[:n])

        stream2[trace].data = ret

    return stream2 
開發者ID:dispel4py,項目名稱:dispel4py,代碼行數:24,代碼來源:whiten.py

示例14: spectralwhitening_smooth

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def spectralwhitening_smooth(stream, N):
    """
    Apply spectral whitening to data.
    Data is divided by its smoothed (Default: None) amplitude spectrum.
    """
    stream2 = copy.deepcopy(stream)

    for trace in arange(len(stream2)):
        data = stream2[trace].data

        n = len(data)
        nfft = nextpow2(n)

        spec = fft(data, nfft)
        spec_ampl = sqrt(abs(multiply(spec, conjugate(spec))))

        spec_ampl = smooth(spec_ampl, N)

        spec /= spec_ampl  # Do we need to do some smoothing here?
        ret = real(ifft(spec, nfft)[:n])

        stream2[trace].data = ret

    return stream2 
開發者ID:dispel4py,項目名稱:dispel4py,代碼行數:26,代碼來源:whiten.py

示例15: _gaussian_basis_change

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import conjugate [as 別名]
def _gaussian_basis_change(qubits: Sequence[cirq.Qid],
                           transformation_matrix: numpy.ndarray,
                           initially_occupied_orbitals: Optional[Sequence[int]]
                           ) -> cirq.OP_TREE:
    n_qubits = len(qubits)

    # Rearrange the transformation matrix because the OpenFermion routine
    # expects it to describe annihilation operators rather than creation
    # operators
    left_block = transformation_matrix[:, :n_qubits]
    right_block = transformation_matrix[:, n_qubits:]
    transformation_matrix = numpy.block(
            [numpy.conjugate(right_block), numpy.conjugate(left_block)])

    decomposition, left_decomposition, _, left_diagonal = (
        fermionic_gaussian_decomposition(transformation_matrix))

    if (initially_occupied_orbitals is not None and
            len(initially_occupied_orbitals) == 0):
        # Starting with the vacuum state yields additional symmetry
        circuit_description = list(reversed(decomposition))
    else:
        if initially_occupied_orbitals is None:
            # The initial state is not a computational basis state so the
            # phases left on the diagonal in the Givens decomposition matter
            yield (cirq.rz(rads=
                       numpy.angle(left_diagonal[j])).on(qubits[j])
                   for j in range(n_qubits))
        circuit_description = list(reversed(decomposition + left_decomposition))

    yield _ops_from_givens_rotations_circuit_description(
            qubits, circuit_description) 
開發者ID:quantumlib,項目名稱:OpenFermion-Cirq,代碼行數:34,代碼來源:bogoliubov_transform.py


注:本文中的numpy.conjugate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。