本文整理匯總了Python中numpy.complexfloating方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.complexfloating方法的具體用法?Python numpy.complexfloating怎麽用?Python numpy.complexfloating使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.complexfloating方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_basic_property
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def test_basic_property(self):
# Check A = L L^H
shapes = [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
dtypes = (np.float32, np.float64, np.complex64, np.complex128)
for shape, dtype in itertools.product(shapes, dtypes):
np.random.seed(1)
a = np.random.randn(*shape)
if np.issubdtype(dtype, np.complexfloating):
a = a + 1j*np.random.randn(*shape)
t = list(range(len(shape)))
t[-2:] = -1, -2
a = np.matmul(a.transpose(t).conj(), a)
a = np.asarray(a, dtype=dtype)
c = np.linalg.cholesky(a)
b = np.matmul(c, c.transpose(t).conj())
assert_allclose(b, a,
err_msg="{} {}\n{}\n{}".format(shape, dtype, a, c),
atol=500 * a.shape[0] * np.finfo(dtype).eps)
示例2: check_arguments
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def check_arguments(fun, y0, support_complex):
"""Helper function for checking arguments common to all solvers."""
y0 = np.asarray(y0)
if np.issubdtype(y0.dtype, np.complexfloating):
if not support_complex:
raise ValueError("`y0` is complex, but the chosen solver does "
"not support integration in a complex domain.")
dtype = complex
else:
dtype = float
y0 = y0.astype(dtype, copy=False)
if y0.ndim != 1:
raise ValueError("`y0` must be 1-dimensional.")
def fun_wrapped(t, y):
return np.asarray(fun(t, y), dtype=dtype)
return fun_wrapped, y0
示例3: get_test_array
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def get_test_array(shape, tp, val_range=None):
dtype = tp_dtype(tp)
if val_range is None:
nmin, nmax = tp_limits(tp)
else:
nmin, nmax = val_range
if numpy.issubdtype(dtype, numpy.integer):
return numpy.random.randint(nmin, nmax, dtype=dtype, size=shape)
elif numpy.issubdtype(dtype, numpy.floating):
return numpy.random.uniform(nmin, nmax, size=shape).astype(dtype)
elif numpy.issubdtype(dtype, numpy.complexfloating):
return (
numpy.random.uniform(nmin, nmax, size=shape)
+ 1j * numpy.random.uniform(nmin, nmax, size=shape)).astype(dtype)
else:
raise NotImplementedError(dtype)
示例4: _check_1d
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes):
np.random.seed(1234)
if np.issubdtype(dtype, np.complexfloating):
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
else:
data = np.random.randn(*shape)
data = data.astype(dtype)
for type in [1, 2, 3]:
for overwrite_x in [True, False]:
for norm in [None, 'ortho']:
if type == 1 and norm == 'ortho':
continue
should_overwrite = (overwrite_x
and dtype in overwritable_dtypes
and (len(shape) == 1 or
(axis % len(shape) == len(shape)-1
)))
self._check(data, routine, type, None, axis, norm,
overwrite_x, should_overwrite)
示例5: _check_1d
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes):
np.random.seed(1234)
if np.issubdtype(dtype, np.complexfloating):
data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
else:
data = np.random.randn(*shape)
data = data.astype(dtype)
for fftsize in [8, 16, 32]:
for overwrite_x in [True, False]:
should_overwrite = (overwrite_x
and dtype in overwritable_dtypes
and fftsize <= shape[axis]
and (len(shape) == 1 or
(axis % len(shape) == len(shape)-1
and fftsize == shape[axis])))
self._check(data, routine, fftsize, axis,
overwrite_x=overwrite_x,
should_overwrite=should_overwrite)
示例6: test_mu
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def test_mu(self):
self.__arith_init()
# basic tests
assert_array_equal((self.__Asp*self.__Bsp.T).todense(),self.__A*self.__B.T)
for x in supported_dtypes:
A = self.__A.astype(x)
Asp = self.spmatrix(A)
for y in supported_dtypes:
if np.issubdtype(y, np.complexfloating):
B = self.__B.astype(y)
else:
B = self.__B.real.astype(y)
Bsp = self.spmatrix(B)
D1 = A * B.T
S1 = Asp * Bsp.T
assert_array_equal(S1.todense(),D1)
assert_equal(S1.dtype,D1.dtype)
示例7: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def __init__(self, scipy_func, mpmath_func, arg_spec, name=None,
dps=None, prec=None, n=5000, rtol=1e-7, atol=1e-300,
ignore_inf_sign=False):
self.scipy_func = scipy_func
self.mpmath_func = mpmath_func
self.arg_spec = arg_spec
self.dps = dps
self.prec = prec
self.n = n
self.rtol = rtol
self.atol = atol
self.ignore_inf_sign = ignore_inf_sign
if isinstance(self.arg_spec, np.ndarray):
self.is_complex = np.issubdtype(self.arg_spec.dtype, np.complexfloating)
else:
self.is_complex = any([isinstance(arg, ComplexArg) for arg in self.arg_spec])
self.ignore_inf_sign = ignore_inf_sign
if not name or name == '<lambda>':
name = getattr(scipy_func, '__name__', None)
if not name or name == '<lambda>':
name = getattr(mpmath_func, '__name__', None)
self.name = name
示例8: _rand_dtype
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x):
"""Produce random values given shape, dtype, scale, and post-processor.
Args:
rand: a function for producing random values of a given shape, e.g. a
bound version of either onp.RandomState.randn or onp.RandomState.rand.
shape: a shape value as a tuple of positive integers.
dtype: a numpy dtype.
scale: optional, a multiplicative scale for the random values (default 1).
post: optional, a callable for post-processing the random values (default
identity).
Returns:
An ndarray of the given shape and dtype using random values based on a call
to rand but scaled, converted to the appropriate dtype, and post-processed.
"""
r = lambda: onp.asarray(scale * rand(*_dims_of_shape(shape)), dtype)
if onp.issubdtype(dtype, onp.complexfloating):
vals = r() + 1.0j * r()
else:
vals = r()
return _cast_to_shape(onp.asarray(post(vals), dtype), shape, dtype)
示例9: real
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def real(self):
ret_type = numpy.real(numpy.zeros((),dtype=self.dtype)).dtype
shape = list(self.shape)
if not numpy.issubdtype(self.dtype, numpy.complexfloating):
return self
shape[-1] *= 2
dims = numpy.array(pu.c2f(shape),dtype=pu.dim_t)
s = arrayfire.Array()
arrayfire.backend.get().af_device_array(ctypes.pointer(s.arr),
ctypes.c_void_p(self.d_array.device_ptr()),
self.ndim,
ctypes.c_void_p(dims.ctypes.data),
pu.typemap(ret_type).value)
arrayfire.backend.get().af_retain_array(ctypes.pointer(s.arr),s.arr)
a = ndarray(shape, dtype=ret_type, af_array=s)
ret = a[...,::2]
ret._base = a
ret._base_index = (Ellipsis, slice(None,None,2))
return ret
示例10: imag
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def imag(self):
ret_type = numpy.real(numpy.zeros((),dtype=self.dtype)).dtype
shape = list(self.shape)
if not numpy.issubdtype(self.dtype, numpy.complexfloating):
return afnumpy.zeros(self.shape)
shape[-1] *= 2
dims = numpy.array(pu.c2f(shape),dtype=pu.dim_t)
s = arrayfire.Array()
arrayfire.backend.get().af_device_array(ctypes.pointer(s.arr),
ctypes.c_void_p(self.d_array.device_ptr()),
self.ndim,
ctypes.c_void_p(dims.ctypes.data),
pu.typemap(ret_type).value)
arrayfire.backend.get().af_retain_array(ctypes.pointer(s.arr),s.arr)
a = ndarray(shape, dtype=ret_type, af_array=s)
ret = a[...,1::2]
ret._base = a
ret._base_index = (Ellipsis, slice(1,None,2))
return ret
示例11: conj
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def conj(self, copy=True):
"""Element-wise complex conjugation.
If the matrix is of non-complex data type and `copy` is False,
this method does nothing and the data is not copied.
Parameters
----------
copy : bool, optional
If True, the result is guaranteed to not share data with self.
Returns
-------
A : The element-wise complex conjugate.
"""
if np.issubdtype(self.dtype, np.complexfloating):
return self.tocsr(copy=copy).conj(copy=False)
elif copy:
return self.copy()
else:
return self
示例12: test_mu
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def test_mu(self):
self.__arith_init()
# basic tests
assert_array_equal((self.__Asp*self.__Bsp.T).todense(),self.__A*self.__B.T)
for x in supported_dtypes:
A = self.__A.astype(x)
Asp = self.spmatrix(A)
for y in supported_dtypes:
if np.issubdtype(y, np.complexfloating):
B = self.__B.astype(y)
else:
B = self.__B.real.astype(y)
Bsp = self.spmatrix(B)
D1 = A * B.T
S1 = Asp * Bsp.T
assert_allclose(S1.todense(), D1,
atol=1e-14*abs(D1).max())
assert_equal(S1.dtype,D1.dtype)
示例13: test_dtype_cast
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def test_dtype_cast(self):
A_real = scipy.sparse.csr_matrix([[1, 2, 0],
[0, 0, 3],
[4, 0, 5]])
A_complex = scipy.sparse.csr_matrix([[1, 2, 0],
[0, 0, 3],
[4, 0, 5 + 1j]])
b_real = np.array([1,1,1])
b_complex = np.array([1,1,1]) + 1j*np.array([1,1,1])
x = spsolve(A_real, b_real)
assert_(np.issubdtype(x.dtype, np.floating))
x = spsolve(A_real, b_complex)
assert_(np.issubdtype(x.dtype, np.complexfloating))
x = spsolve(A_complex, b_real)
assert_(np.issubdtype(x.dtype, np.complexfloating))
x = spsolve(A_complex, b_complex)
assert_(np.issubdtype(x.dtype, np.complexfloating))
示例14: _get_format_function
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def _get_format_function(data, **options):
"""
find the right formatting function for the dtype_
"""
dtype_ = data.dtype
dtypeobj = dtype_.type
formatdict = _get_formatdict(data, **options)
if issubclass(dtypeobj, _nt.bool_):
return formatdict['bool']()
elif issubclass(dtypeobj, _nt.integer):
if issubclass(dtypeobj, _nt.timedelta64):
return formatdict['timedelta']()
else:
return formatdict['int']()
elif issubclass(dtypeobj, _nt.floating):
if issubclass(dtypeobj, _nt.longfloat):
return formatdict['longfloat']()
else:
return formatdict['float']()
elif issubclass(dtypeobj, _nt.complexfloating):
if issubclass(dtypeobj, _nt.clongfloat):
return formatdict['longcomplexfloat']()
else:
return formatdict['complexfloat']()
elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)):
return formatdict['numpystr']()
elif issubclass(dtypeobj, _nt.datetime64):
return formatdict['datetime']()
elif issubclass(dtypeobj, _nt.object_):
return formatdict['object']()
elif issubclass(dtypeobj, _nt.void):
if dtype_.names is not None:
return StructuredVoidFormat.from_data(data, **options)
else:
return formatdict['void']()
else:
return formatdict['numpystr']()
示例15: test_abstract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complexfloating [as 別名]
def test_abstract(self):
assert_(issubclass(np.number, numbers.Number))
assert_(issubclass(np.inexact, numbers.Complex))
assert_(issubclass(np.complexfloating, numbers.Complex))
assert_(issubclass(np.floating, numbers.Real))
assert_(issubclass(np.integer, numbers.Integral))
assert_(issubclass(np.signedinteger, numbers.Integral))
assert_(issubclass(np.unsignedinteger, numbers.Integral))