本文整理匯總了Python中numpy.complex256方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.complex256方法的具體用法?Python numpy.complex256怎麽用?Python numpy.complex256使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.complex256方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_np_builtin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def test_np_builtin(self):
self.pod_util(np.int64(42))
self.pod_util(np.int32(42))
self.pod_util(np.int16(42))
self.pod_util(np.int8(42))
self.pod_util(np.uint64(42))
self.pod_util(np.uint32(42))
self.pod_util(np.uint16(42))
self.pod_util(np.uint8(42))
self.pod_util(np.float16(42))
self.pod_util(np.float32(42))
self.pod_util(np.float64(42))
# self.pod_util(np.float128(42))
self.pod_util(np.complex64(42))
self.pod_util(np.complex128(42))
# self.pod_util(np.complex256(42))
示例2: numpy2bifrost
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def numpy2bifrost(dtype):
if dtype == np.int8: return _bf.BF_DTYPE_I8
elif dtype == np.int16: return _bf.BF_DTYPE_I16
elif dtype == np.int32: return _bf.BF_DTYPE_I32
elif dtype == np.uint8: return _bf.BF_DTYPE_U8
elif dtype == np.uint16: return _bf.BF_DTYPE_U16
elif dtype == np.uint32: return _bf.BF_DTYPE_U32
elif dtype == np.float16: return _bf.BF_DTYPE_F16
elif dtype == np.float32: return _bf.BF_DTYPE_F32
elif dtype == np.float64: return _bf.BF_DTYPE_F64
elif dtype == np.float128: return _bf.BF_DTYPE_F128
elif dtype == ci8: return _bf.BF_DTYPE_CI8
elif dtype == ci16: return _bf.BF_DTYPE_CI16
elif dtype == ci32: return _bf.BF_DTYPE_CI32
elif dtype == cf16: return _bf.BF_DTYPE_CF16
elif dtype == np.complex64: return _bf.BF_DTYPE_CF32
elif dtype == np.complex128: return _bf.BF_DTYPE_CF64
elif dtype == np.complex256: return _bf.BF_DTYPE_CF128
else: raise ValueError("Unsupported dtype: " + str(dtype))
示例3: numpy2string
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def numpy2string(dtype):
if dtype == np.int8: return 'i8'
elif dtype == np.int16: return 'i16'
elif dtype == np.int32: return 'i32'
elif dtype == np.int64: return 'i64'
elif dtype == np.uint8: return 'u8'
elif dtype == np.uint16: return 'u16'
elif dtype == np.uint32: return 'u32'
elif dtype == np.uint64: return 'u64'
elif dtype == np.float16: return 'f16'
elif dtype == np.float32: return 'f32'
elif dtype == np.float64: return 'f64'
elif dtype == np.float128: return 'f128'
elif dtype == np.complex64: return 'cf32'
elif dtype == np.complex128: return 'cf64'
elif dtype == np.complex256: return 'cf128'
else: raise TypeError("Unsupported dtype: " + str(dtype))
示例4: test_numpy_dtype_compatibility
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def test_numpy_dtype_compatibility():
i_a, i_b, i_c = 0, 1, 2
i_types = [np.intc, np.intp, np.int0, np.int8, np.int16, np.int32, np.int64]
for i_type in i_types:
assert cirq.approx_eq(i_type(i_a), i_type(i_b), atol=1)
assert not cirq.approx_eq(i_type(i_a), i_type(i_c), atol=1)
u_types = [np.uint, np.uint0, np.uint8, np.uint16, np.uint32, np.uint64]
for u_type in u_types:
assert cirq.approx_eq(u_type(i_a), u_type(i_b), atol=1)
assert not cirq.approx_eq(u_type(i_a), u_type(i_c), atol=1)
f_a, f_b, f_c = 0, 1e-8, 1
f_types = [np.float16, np.float32, np.float64]
if hasattr(np, 'float128'):
f_types.append(np.float128)
for f_type in f_types:
assert cirq.approx_eq(f_type(f_a), f_type(f_b), atol=1e-8)
assert not cirq.approx_eq(f_type(f_a), f_type(f_c), atol=1e-8)
c_a, c_b, c_c = 0, 1e-8j, 1j
c_types = [np.complex64, np.complex128]
if hasattr(np, 'complex256'):
c_types.append(np.complex256)
for c_type in c_types:
assert cirq.approx_eq(c_type(c_a), c_type(c_b), atol=1e-8)
assert not cirq.approx_eq(c_type(c_a), c_type(c_c), atol=1e-8)
示例5: test_approx_eq_mixed_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def test_approx_eq_mixed_types():
assert cirq.approx_eq(np.float32(1), 1.0 + 1e-10, atol=1e-9)
assert cirq.approx_eq(np.float64(1), np.complex64(1 + 1e-8j), atol=1e-4)
assert cirq.approx_eq(np.uint8(1), np.complex64(1 + 1e-8j), atol=1e-4)
if hasattr(np, 'complex256'):
assert cirq.approx_eq(np.complex256(1), complex(1, 1e-8), atol=1e-4)
assert cirq.approx_eq(np.int32(1), 1, atol=1e-9)
assert cirq.approx_eq(complex(0.5, 0), Fraction(1, 2), atol=0.0)
assert cirq.approx_eq(0.5 + 1e-4j, Fraction(1, 2), atol=1e-4)
assert cirq.approx_eq(0, Fraction(1, 100000000), atol=1e-8)
assert cirq.approx_eq(np.uint16(1), Decimal('1'), atol=0.0)
assert cirq.approx_eq(np.float64(1.0), Decimal('1.00000001'), atol=1e-8)
assert not cirq.approx_eq(np.complex64(1e-5j), Decimal('0.001'), atol=1e-4)
示例6: test_equal_up_to_global_mixed_array_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def test_equal_up_to_global_mixed_array_types():
a = [1j, 1, -1j, -1]
b = [-1, 1j, 1, -1j]
c = [-1, 1, -1, 1]
assert cirq.equal_up_to_global_phase(a, tuple(b))
assert not cirq.equal_up_to_global_phase(a, tuple(c))
c_types = [np.complex64, np.complex128]
if hasattr(np, 'complex256'):
c_types.append(np.complex256)
for c_type in c_types:
assert cirq.equal_up_to_global_phase(np.asarray(a, dtype=c_type),
tuple(b))
assert not cirq.equal_up_to_global_phase(np.asarray(a, dtype=c_type),
tuple(c))
assert cirq.equal_up_to_global_phase(np.asarray(a, dtype=c_type), b)
assert not cirq.equal_up_to_global_phase(np.asarray(a, dtype=c_type), c)
# Object arrays and mixed array/scalar comparisons.
assert not cirq.equal_up_to_global_phase([1j], 1j)
assert not cirq.equal_up_to_global_phase(
np.asarray([1], dtype=np.complex128), np.exp(1j))
assert not cirq.equal_up_to_global_phase([1j, 1j], [1j, "1j"])
assert not cirq.equal_up_to_global_phase([1j], "Non-numeric iterable")
assert not cirq.equal_up_to_global_phase([], [[]], atol=0.0)
# Dummy container class implementing _equal_up_to_global_phase_
# for homogeneous comparison, with nontrivial getter.
示例7: default
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def default(self, obj):
"""If input object is an ndarray it will be converted into a dict
holding dtype, shape and the data, base64 encoded.
"""
numpy_types = (
np.bool_,
# np.bytes_, -- python `bytes` class is not json serializable
# np.complex64, -- python `complex` class is not json serializable
# np.complex128, -- python `complex` class is not json serializable
# np.complex256, -- python `complex` class is not json serializable
# np.datetime64, -- python `datetime.datetime` class is not json serializable
np.float16,
np.float32,
np.float64,
# np.float128, -- special handling below
np.int8,
np.int16,
np.int32,
np.int64,
# np.object_ -- should already be evaluated as python native
np.str_,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
np.void,
)
if isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, numpy_types):
return obj.item()
elif isinstance(obj, np.float128):
return obj.astype(np.float64).item()
elif isinstance(obj, Decimal):
return str(obj)
elif isinstance(obj, datetime):
return str(obj)
elif obj is np.ma.masked:
return str(np.NaN)
# Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, obj)
示例8: test_complex256_dtype_raises_exception
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def test_complex256_dtype_raises_exception(self):
# complex256 only exists on some platforms
if hasattr(np, 'complex256'):
data = np.arange(6, dtype=np.complex256).reshape(3, 2)
self.assert_dtype_raises_exception(data)
示例9: name_nbit2numpy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import complex256 [as 別名]
def name_nbit2numpy(name, nbit):
if name == 'i':
if nbit == 8: return np.int8
elif nbit == 16: return np.int16
elif nbit == 32: return np.int32
elif nbit == 64: return np.int64
else: raise TypeError("Invalid signed integer type size: %i" % nbit)
elif name == 'u':
if nbit == 8: return np.uint8
elif nbit == 16: return np.uint16
elif nbit == 32: return np.uint32
elif nbit == 64: return np.uint64
else: raise TypeError("Invalid unsigned integer type size: %i" % nbit)
elif name == 'f':
if nbit == 16: return np.float16
elif nbit == 32: return np.float32
elif nbit == 64: return np.float64
elif nbit == 128: return np.float128
else: raise TypeError("Invalid floating-point type size: %i" % nbit)
elif name == 'ci':
if nbit == 8: return ci8
elif nbit == 16: return ci16
elif nbit == 32: return ci32
# elif name in set(['ci', 'cu']):
# Note: This gives integer types in place of proper complex types
# return name_nbit2numpy(name[1:], nbit*2)
elif name == 'cf':
if nbit == 16: return cf16
elif nbit == 32: return np.complex64
elif nbit == 64: return np.complex128
elif nbit == 128: return np.complex256
else: raise TypeError("Invalid complex floating-point type size: %i" %
nbit)
else:
raise TypeError("Invalid type name: " + name)