本文整理匯總了Python中numpy.compat.integer_types方法的典型用法代碼示例。如果您正苦於以下問題:Python compat.integer_types方法的具體用法?Python compat.integer_types怎麽用?Python compat.integer_types使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.compat
的用法示例。
在下文中一共展示了compat.integer_types方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_equal_to_original
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def test_equal_to_original(self):
""" Test that the new (>=v1.15) implementation (see #10073) is equal to the original (<=v1.14) """
from numpy.compat import integer_types
from numpy.core import asarray, concatenate, arange, take
def original_fftshift(x, axes=None):
""" How fftshift was implemented in v1.14"""
tmp = asarray(x)
ndim = tmp.ndim
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = (n + 1) // 2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
def original_ifftshift(x, axes=None):
""" How ifftshift was implemented in v1.14 """
tmp = asarray(x)
ndim = tmp.ndim
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n - (n + 1) // 2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
# create possible 2d array combinations and try all possible keywords
# compare output to original functions
for i in range(16):
for j in range(16):
for axes_keyword in [0, 1, None, (0,), (0, 1)]:
inp = np.random.rand(i, j)
assert_array_almost_equal(fft.fftshift(inp, axes_keyword),
original_fftshift(inp, axes_keyword))
assert_array_almost_equal(fft.ifftshift(inp, axes_keyword),
original_ifftshift(inp, axes_keyword))
示例2: fftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def fftshift(x, axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
x = asarray(x)
if axes is None:
axes = tuple(range(x.ndim))
shift = [dim // 2 for dim in x.shape]
elif isinstance(axes, integer_types):
shift = x.shape[axes] // 2
else:
shift = [x.shape[ax] // 2 for ax in axes]
return roll(x, shift, axes)
示例3: ifftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def ifftshift(x, axes=None):
"""
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
x = asarray(x)
if axes is None:
axes = tuple(range(x.ndim))
shift = [-(dim // 2) for dim in x.shape]
elif isinstance(axes, integer_types):
shift = -(x.shape[axes] // 2)
else:
shift = [-(x.shape[ax] // 2) for ax in axes]
return roll(x, shift, axes)
示例4: fftfreq
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def fftfreq(n, d=1.0):
"""
Return the Discrete Fourier Transform sample frequencies.
The returned float array `f` contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length `n` and a sample spacing `d`::
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
Parameters
----------
n : int
Window length.
d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns
-------
f : ndarray
Array of length `n` containing the sample frequencies.
Examples
--------
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
"""
if not isinstance(n, integer_types):
raise ValueError("n should be an integer")
val = 1.0 / (n * d)
results = empty(n, int)
N = (n-1)//2 + 1
p1 = arange(0, N, dtype=int)
results[:N] = p1
p2 = arange(-(n//2), 0, dtype=int)
results[N:] = p2
return results * val
示例5: rfftfreq
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def rfftfreq(n, d=1.0):
"""
Return the Discrete Fourier Transform sample frequencies
(for usage with rfft, irfft).
The returned float array `f` contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length `n` and a sample spacing `d`::
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
the Nyquist frequency component is considered to be positive.
Parameters
----------
n : int
Window length.
d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns
-------
f : ndarray
Array of length ``n//2 + 1`` containing the sample frequencies.
Examples
--------
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
>>> fourier = np.fft.rfft(signal)
>>> n = signal.size
>>> sample_rate = 100
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
>>> freq
array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
>>> freq
array([ 0., 10., 20., 30., 40., 50.])
"""
if not isinstance(n, integer_types):
raise ValueError("n should be an integer")
val = 1.0/(n*d)
N = n//2 + 1
results = arange(0, N, dtype=int)
return results * val
示例6: fftfreq
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def fftfreq(n, d=1.0):
"""
Return the Discrete Fourier Transform sample frequencies.
The returned float array `f` contains the frequency bin centers in cycles
per unit of the sample spacing (with zero at the start). For instance, if
the sample spacing is in seconds, then the frequency unit is cycles/second.
Given a window length `n` and a sample spacing `d`::
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
Parameters
----------
n : int
Window length.
d : scalar, optional
Sample spacing (inverse of the sampling rate). Defaults to 1.
Returns
-------
f : ndarray
Array of length `n` containing the sample frequencies.
Examples
--------
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
"""
if not isinstance(n, integer_types):
raise ValueError("n should be an integer")
val = 1.0 / (n * d)
results = empty(n, int)
N = (n-1)//2 + 1
p1 = arange(0, N, dtype=int)
results[:N] = p1
p2 = arange(-(n//2), 0, dtype=int)
results[N:] = p2
return results * val
#return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)
示例7: fftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def fftshift(x, axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = (n+1)//2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
示例8: ifftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def ifftshift(x, axes=None):
"""
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n-(n+1)//2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
示例9: fftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def fftshift(x, axes=None):
"""
Shift the zero-frequency component to the center of the spectrum.
This function swaps half-spaces for all axes listed (defaults to all).
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to shift. Default is None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
ifftshift : The inverse of `fftshift`.
Examples
--------
>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
Shift the zero-frequency component only along the second axis:
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.fftshift(freqs, axes=(1,))
array([[ 2., 0., 1.],
[-4., 3., 4.],
[-1., -3., -2.]])
"""
tmp = asarray(x)
ndim = tmp.ndim
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = (n+1)//2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
示例10: ifftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def ifftshift(x, axes=None):
"""
The inverse of `fftshift`. Although identical for even-length `x`, the
functions differ by one sample for odd-length `x`.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
tmp = asarray(x)
ndim = tmp.ndim
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n-(n+1)//2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y
示例11: ifftshift
# 需要導入模塊: from numpy import compat [as 別名]
# 或者: from numpy.compat import integer_types [as 別名]
def ifftshift(x, axes=None):
"""
The inverse of fftshift.
Parameters
----------
x : array_like
Input array.
axes : int or shape tuple, optional
Axes over which to calculate. Defaults to None, which shifts all axes.
Returns
-------
y : ndarray
The shifted array.
See Also
--------
fftshift : Shift zero-frequency component to the center of the spectrum.
Examples
--------
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
>>> freqs
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
array([[ 0., 1., 2.],
[ 3., 4., -4.],
[-3., -2., -1.]])
"""
tmp = asarray(x)
ndim = len(tmp.shape)
if axes is None:
axes = list(range(ndim))
elif isinstance(axes, integer_types):
axes = (axes,)
y = tmp
for k in axes:
n = tmp.shape[k]
p2 = n-(n+1)//2
mylist = concatenate((arange(p2, n), arange(p2)))
y = take(y, mylist, k)
return y